Vincenzo Bonnici, Roberto Grasso, Giovanni Micale, Antonio di Maria, Dennis Shasha, Alfredo Pulvirenti, Rosalba Giugno
{"title":"ArcMatch: high-performance subgraph matching for labeled graphs by exploiting edge domains","authors":"Vincenzo Bonnici, Roberto Grasso, Giovanni Micale, Antonio di Maria, Dennis Shasha, Alfredo Pulvirenti, Rosalba Giugno","doi":"10.1007/s10618-024-01061-8","DOIUrl":null,"url":null,"abstract":"<p>Consider a large labeled graph (network), denoted the <i>target</i>. Subgraph matching is the problem of finding all instances of a small subgraph, denoted the <i>query</i>, in the target graph. Unlike the majority of existing methods that are restricted to graphs with labels solely on vertices, our proposed approach, named can effectively handle graphs with labels on both vertices and edges. ntroduces an efficient new vertex/edge domain data structure filtering procedure to speed up subgraph queries. The procedure, called path-based reduction, filters initial domains by scanning them for paths up to a specified length that appear in the query graph. Additionally, ncorporates existing techniques like variable ordering and parent selection, as well as adapting the core search process, to take advantage of the information within edge domains. Experiments in real scenarios such as protein–protein interaction graphs, co-authorship networks, and email networks, show that s faster than state-of-the-art systems varying the number of distinct vertex labels over the whole target graph and query sizes.</p>","PeriodicalId":55183,"journal":{"name":"Data Mining and Knowledge Discovery","volume":"42 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Mining and Knowledge Discovery","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10618-024-01061-8","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Consider a large labeled graph (network), denoted the target. Subgraph matching is the problem of finding all instances of a small subgraph, denoted the query, in the target graph. Unlike the majority of existing methods that are restricted to graphs with labels solely on vertices, our proposed approach, named can effectively handle graphs with labels on both vertices and edges. ntroduces an efficient new vertex/edge domain data structure filtering procedure to speed up subgraph queries. The procedure, called path-based reduction, filters initial domains by scanning them for paths up to a specified length that appear in the query graph. Additionally, ncorporates existing techniques like variable ordering and parent selection, as well as adapting the core search process, to take advantage of the information within edge domains. Experiments in real scenarios such as protein–protein interaction graphs, co-authorship networks, and email networks, show that s faster than state-of-the-art systems varying the number of distinct vertex labels over the whole target graph and query sizes.
期刊介绍:
Advances in data gathering, storage, and distribution have created a need for computational tools and techniques to aid in data analysis. Data Mining and Knowledge Discovery in Databases (KDD) is a rapidly growing area of research and application that builds on techniques and theories from many fields, including statistics, databases, pattern recognition and learning, data visualization, uncertainty modelling, data warehousing and OLAP, optimization, and high performance computing.