Colan G. Balkwill, Julie R. Deslippe, Paul Horton, Charles David, Chen Wu, Emily Koot, Peter Ritchie, Wayne Blissett, David Chagné
{"title":"De-novo assembly of a reference genome for a critically threatened Aotearoa New Zealand tree species, Syzygium maire (Myrtaceae)","authors":"Colan G. Balkwill, Julie R. Deslippe, Paul Horton, Charles David, Chen Wu, Emily Koot, Peter Ritchie, Wayne Blissett, David Chagné","doi":"10.1007/s11295-024-01659-5","DOIUrl":null,"url":null,"abstract":"<p>Aotearoa New Zealand’s swamp forests have experienced significant habitat loss in fewer than two hundred years. Many of the country’s tree species are endemic with sparse to no genetic information available to underpin conservation strategies. <i>Syzygium maire</i>, Aotearoa’s only endemic <i>Syzygium</i> species, is a culturally and ecologically important component of swamp forest habitats. Unfortunately, populations of <i>S. maire</i> have been greatly reduced, heavily fragmented and are susceptible to the emergent pathogen <i>Austropuccinia psidii</i> (myrtle rust), posing eminent danger of a further decline of the species. We sought to develop genomic resources to inform conservation management of <i>S. maire</i>. To this end, we used long read, high accuracy sequencing technology to produce a highly complete reference quality genome for <i>S. maire</i>. The genome sequence was named ‘Ngā Hua o te Ia Whenua’ by the local Māori tribe where the tree used for genome sequencing grows. We assess whether genome-level divergence with other Myrtaceae may have followed geographic isolation of the species. We detect conservation of large scale synteny between three <i>Syzygium</i> species and <i>Eucalyptus grandis</i>, providing support for the stability of <i>Syzygium</i> genomes across evolutionary time. We annotate genes implicated in fungal pathogen defence, identifying several hundred putative NLR genes, including putative homologs of previously identified <i>Austropuccinia psidii</i> resistance genes. Finally, we evaluate the genetic relationships of individuals of a small, isolated population of trees. We find evidence of high levels of kinship and inbreeding within small and isolated <i>S. maire</i> populations, informing local-scale conservation strategies for the species. Our findings enable practical conservation actions and provide resources for larger scale studies of <i>S. maire</i> and other <i>Syzygium</i> species in the future.</p>","PeriodicalId":23335,"journal":{"name":"Tree Genetics & Genomes","volume":"130 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tree Genetics & Genomes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11295-024-01659-5","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Aotearoa New Zealand’s swamp forests have experienced significant habitat loss in fewer than two hundred years. Many of the country’s tree species are endemic with sparse to no genetic information available to underpin conservation strategies. Syzygium maire, Aotearoa’s only endemic Syzygium species, is a culturally and ecologically important component of swamp forest habitats. Unfortunately, populations of S. maire have been greatly reduced, heavily fragmented and are susceptible to the emergent pathogen Austropuccinia psidii (myrtle rust), posing eminent danger of a further decline of the species. We sought to develop genomic resources to inform conservation management of S. maire. To this end, we used long read, high accuracy sequencing technology to produce a highly complete reference quality genome for S. maire. The genome sequence was named ‘Ngā Hua o te Ia Whenua’ by the local Māori tribe where the tree used for genome sequencing grows. We assess whether genome-level divergence with other Myrtaceae may have followed geographic isolation of the species. We detect conservation of large scale synteny between three Syzygium species and Eucalyptus grandis, providing support for the stability of Syzygium genomes across evolutionary time. We annotate genes implicated in fungal pathogen defence, identifying several hundred putative NLR genes, including putative homologs of previously identified Austropuccinia psidii resistance genes. Finally, we evaluate the genetic relationships of individuals of a small, isolated population of trees. We find evidence of high levels of kinship and inbreeding within small and isolated S. maire populations, informing local-scale conservation strategies for the species. Our findings enable practical conservation actions and provide resources for larger scale studies of S. maire and other Syzygium species in the future.
新西兰的沼泽森林在不到两百年的时间里经历了严重的栖息地丧失。新西兰的许多树种都是地方特有物种,但却鲜有遗传信息可作为保护战略的基础。Syzygium maire 是奥特亚罗瓦唯一特有的 Syzygium 树种,是沼泽森林栖息地在文化和生态方面的重要组成部分。不幸的是,S. maire 的种群数量已经大大减少,严重破碎化,并且很容易受到新出现的病原体 Austropuccinia psidii(桃金娘锈病)的侵袭,这给该物种的进一步减少带来了极大的危险。我们试图开发基因组资源,为 S. maire 的保护管理提供信息。为此,我们利用长读数、高精度测序技术为 S. maire 制作了一个高度完整的参考质量基因组。该基因组序列被当地毛利部落命名为 "Ngā Hua o te Ia Whenua",用于基因组测序的树木就生长在该部落。我们评估了该物种与其他桃金娘科植物在基因组水平上的分化是否与地理隔离有关。我们发现三个紫薇属植物与大桉树之间存在大规模的同源关系,这为紫薇属植物基因组在进化过程中的稳定性提供了支持。我们对涉及真菌病原体防御的基因进行了注释,确定了几百个推定的 NLR 基因,包括之前确定的 Austropuccinia psidii 抗性基因的推定同源物。最后,我们评估了一个孤立的小种群树木个体之间的遗传关系。我们发现有证据表明,在与世隔绝的小型 S. maire 种群中,亲缘关系和近亲繁殖程度很高,这为该物种的地方保护战略提供了信息。我们的研究结果有助于采取切实可行的保护措施,并为将来对 S. maire 和其他茜草物种进行更大规模的研究提供了资源。
期刊介绍:
Tree Genetics and Genomes is an international, peer-reviewed journal, which provides for the rapid publication of high quality papers covering the areas of forest and horticultural tree genetics and genomics.
Topics covered in this journal include:
Structural, functional and comparative genomics
Evolutionary, population and quantitative genetics
Ecological and physiological genetics
Molecular, cellular and developmental genetics
Conservation and restoration genetics
Breeding and germplasm development
Bioinformatics and databases
Tree Genetics and Genomes publishes four types of papers:
(1) Original Paper
(2) Review
(3) Opinion Paper
(4) Short Communication.