A New Class of FBI Transforms and Applications

IF 1.2 3区 数学 Q2 MATHEMATICS, APPLIED
G. Hoepfner, R. Medrado
{"title":"A New Class of FBI Transforms and Applications","authors":"G. Hoepfner, R. Medrado","doi":"10.1007/s00041-024-10102-1","DOIUrl":null,"url":null,"abstract":"<p>We introduce a class of FBI transforms using weight functions (which includes the subclass of Sjöstrand’s FBI transforms used by Christ in (Commun Partial Differ Equ 22(3–4):359–379, 1997)) that is well suited when dealing with ultradifferentiable functions (see Definition 2.3) and ultradistributions (see Definition 2.15) defined by weight functions in the sense of Braun, Meise and Taylor (BMT). We show how to characterize local regularity of BMT ultradistributions using this wider class of FBI transform and, as an application, we characterize the BMT vectors (see Definition 1.2) and prove a relation between BMT local regularity and BMT vectors.</p>","PeriodicalId":15993,"journal":{"name":"Journal of Fourier Analysis and Applications","volume":"115 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fourier Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00041-024-10102-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a class of FBI transforms using weight functions (which includes the subclass of Sjöstrand’s FBI transforms used by Christ in (Commun Partial Differ Equ 22(3–4):359–379, 1997)) that is well suited when dealing with ultradifferentiable functions (see Definition 2.3) and ultradistributions (see Definition 2.15) defined by weight functions in the sense of Braun, Meise and Taylor (BMT). We show how to characterize local regularity of BMT ultradistributions using this wider class of FBI transform and, as an application, we characterize the BMT vectors (see Definition 1.2) and prove a relation between BMT local regularity and BMT vectors.

Abstract Image

新型联邦调查局变换及其应用
我们介绍了一类使用权重函数的联邦调查局变换(其中包括克里斯特在(Comm Partial Differ Equ 22(3-4):359-379, 1997)中使用的西约斯特兰德联邦调查局变换子类),它非常适合处理超微分函数(见定义 2.3)和由布劳恩、梅斯和泰勒(BMT)意义上的权重函数定义的超分布(见定义 2.15)。我们展示了如何利用这一类更广泛的联邦调查局变换来表征 BMT 超分布的局部正则性,作为应用,我们表征了 BMT 向量(见定义 1.2),并证明了 BMT 局部正则性与 BMT 向量之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
16.70%
发文量
72
审稿时长
6-12 weeks
期刊介绍: The Journal of Fourier Analysis and Applications will publish results in Fourier analysis, as well as applicable mathematics having a significant Fourier analytic component. Appropriate manuscripts at the highest research level will be accepted for publication. Because of the extensive, intricate, and fundamental relationship between Fourier analysis and so many other subjects, selected and readable surveys will also be published. These surveys will include historical articles, research tutorials, and expositions of specific topics. TheJournal of Fourier Analysis and Applications will provide a perspective and means for centralizing and disseminating new information from the vantage point of Fourier analysis. The breadth of Fourier analysis and diversity of its applicability require that each paper should contain a clear and motivated introduction, which is accessible to all of our readers. Areas of applications include the following: antenna theory * crystallography * fast algorithms * Gabor theory and applications * image processing * number theory * optics * partial differential equations * prediction theory * radar applications * sampling theory * spectral estimation * speech processing * stochastic processes * time-frequency analysis * time series * tomography * turbulence * uncertainty principles * wavelet theory and applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信