This paper examines the effect of viscoelasticity on the periodic response of a lumped parameter viscoelastic von Mises truss. The viscoelastic system is described by a second-order equation that governs the mechanical motion coupled to a first-order equation that governs the time evolution of the viscoelastic forces. The viscoelastic force evolves at a much slower rate than the elastic oscillations in the system. This adds additional time scales and degrees of freedom to the system compared to its viscous counterparts. The focus of this study is on the system’s behavior under harmonic loading, which is expected to show both regular and chaotic dynamics for certain combinations of forcing frequency and amplitude. While the presence of chaos in this system has already been demonstrated, we shall concentrate only on the periodic solutions. The presence of the intrawell and interwell periodic oscillations is revealed using the Harmonic Balance method. The study also looks at the influence of parameter changes on the system’s behavior through bifurcation diagrams, which enable us to identify optimal system parameters for maximum energy dissipation. Lastly, we formulate an equivalent viscous system using an energy-based approach. We observe that a naive viscous model fails to capture the behavior accurately depending on the system and excitation parameters, as well as the type of excitation. This underscores the necessity to study the full-scale viscoelastic system.