Tensorial template matching for fast cross-correlation with rotations and its application for tomography

Antonio Martinez-SanchezUniversity of Murcia, Spain, Ulrike HombergThermo Fisher Scientific, José María AlmiraUniversity of Murcia, Spain, Harold PhelippeauThermo Fisher Scientific
{"title":"Tensorial template matching for fast cross-correlation with rotations and its application for tomography","authors":"Antonio Martinez-SanchezUniversity of Murcia, Spain, Ulrike HombergThermo Fisher Scientific, José María AlmiraUniversity of Murcia, Spain, Harold PhelippeauThermo Fisher Scientific","doi":"arxiv-2408.02398","DOIUrl":null,"url":null,"abstract":"Object detection is a main task in computer vision. Template matching is the\nreference method for detecting objects with arbitrary templates. However,\ntemplate matching computational complexity depends on the rotation accuracy,\nbeing a limiting factor for large 3D images (tomograms). Here, we implement a\nnew algorithm called tensorial template matching, based on a mathematical\nframework that represents all rotations of a template with a tensor field.\nContrary to standard template matching, the computational complexity of the\npresented algorithm is independent of the rotation accuracy. Using both,\nsynthetic and real data from tomography, we demonstrate that tensorial template\nmatching is much faster than template matching and has the potential to improve\nits accuracy","PeriodicalId":501266,"journal":{"name":"arXiv - QuanBio - Quantitative Methods","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Quantitative Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.02398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Object detection is a main task in computer vision. Template matching is the reference method for detecting objects with arbitrary templates. However, template matching computational complexity depends on the rotation accuracy, being a limiting factor for large 3D images (tomograms). Here, we implement a new algorithm called tensorial template matching, based on a mathematical framework that represents all rotations of a template with a tensor field. Contrary to standard template matching, the computational complexity of the presented algorithm is independent of the rotation accuracy. Using both, synthetic and real data from tomography, we demonstrate that tensorial template matching is much faster than template matching and has the potential to improve its accuracy
用于旋转快速交叉相关的张量模板匹配及其在断层扫描中的应用
物体检测是计算机视觉领域的一项主要任务。模板匹配是利用任意模板检测物体的一种参考方法。然而,模板匹配的计算复杂度取决于旋转精度,这对于大型三维图像(断层图像)来说是一个限制因素。与标准模板匹配相反,本算法的计算复杂度与旋转精度无关。与标准模板匹配算法相反,本算法的计算复杂度与旋转精度无关。我们利用断层扫描的合成数据和真实数据证明,张量模板匹配比模板匹配快得多,而且有可能提高其精度
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信