Escape cascades as a behavioral contagion process with adaptive network dynamics

Wenhan Wu, Xiaoping Zheng, Pawel Romanczuk
{"title":"Escape cascades as a behavioral contagion process with adaptive network dynamics","authors":"Wenhan Wu, Xiaoping Zheng, Pawel Romanczuk","doi":"arxiv-2408.05096","DOIUrl":null,"url":null,"abstract":"Complex behavioral contagion in collective evasion of mobile animal groups\ncan be predicted by reconstructing quantitative interaction networks. Based on\nthe assumption of time-scale separation between a fast contagion process and a\nslower movement response, the underlying interaction networks have been\npreviously assumed to be static, determined by the spatial structure at the\nonset of the collective escape response. This idealization does not account for\nthe temporal evolution of the spatial network structure, which may have a major\nimpact on the behavioral contagion dynamics. Here, we propose a\nspatially-explicit, agent-based model for the coupling between behavioral\ncontagion and the network dynamics originating from the spreading movement\nresponse. We explore the impact of movement parameters (startle speed, initial\ndirectionality, and directional noise) on average cascade size. By conducting\nnumerical simulations for different density levels, we show that increasing\nescape speed suppresses the cascade size in most cases, that the cascade size\ndepends strongly on the movement direction of the initially startled\nindividual, and that large variability in the direction of individual escape\nmovements (rotational noise) will typically promote the spread of behavioral\ncontagion through spatial groups. Our work highlights the importance of\naccounting for movement dynamics in behavioral contagion, and facilitates our\nunderstanding of rapid coordinated response and collective information\nprocessing in animal groups.","PeriodicalId":501266,"journal":{"name":"arXiv - QuanBio - Quantitative Methods","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Quantitative Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.05096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Complex behavioral contagion in collective evasion of mobile animal groups can be predicted by reconstructing quantitative interaction networks. Based on the assumption of time-scale separation between a fast contagion process and a slower movement response, the underlying interaction networks have been previously assumed to be static, determined by the spatial structure at the onset of the collective escape response. This idealization does not account for the temporal evolution of the spatial network structure, which may have a major impact on the behavioral contagion dynamics. Here, we propose a spatially-explicit, agent-based model for the coupling between behavioral contagion and the network dynamics originating from the spreading movement response. We explore the impact of movement parameters (startle speed, initial directionality, and directional noise) on average cascade size. By conducting numerical simulations for different density levels, we show that increasing escape speed suppresses the cascade size in most cases, that the cascade size depends strongly on the movement direction of the initially startled individual, and that large variability in the direction of individual escape movements (rotational noise) will typically promote the spread of behavioral contagion through spatial groups. Our work highlights the importance of accounting for movement dynamics in behavioral contagion, and facilitates our understanding of rapid coordinated response and collective information processing in animal groups.
逃逸级联是一种具有自适应网络动力学的行为传染过程
通过重建定量相互作用网络,可以预测移动动物群体集体逃避时的复杂行为传染。基于快速传染过程与较慢移动反应之间时间尺度分离的假设,以前一直认为基本的相互作用网络是静态的,由集体逃避反应开始时的空间结构决定。这种理想化并没有考虑到空间网络结构的时间演化,而这种演化可能会对行为传染动力学产生重大影响。在这里,我们提出了一个基于空间的显式代理模型,用于研究行为传染与源自扩散运动反应的网络动力学之间的耦合。我们探讨了运动参数(惊吓速度、初始方向性和方向噪声)对平均级联规模的影响。通过对不同密度水平进行数值模拟,我们发现在大多数情况下,增加逃逸速度会抑制级联大小,级联大小与最初受惊个体的运动方向密切相关,个体逃逸方向的巨大变异(旋转噪声)通常会促进行为传染在空间群中的传播。我们的研究强调了在行为传染中考虑运动动态的重要性,并有助于我们理解动物群体的快速协调反应和集体信息处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信