{"title":"Contact and bulk rectification effects in ferromagnetic resonance experiments","authors":"Md. Majibul Haque Babu, Maxim Tsoi","doi":"10.1063/10.0027925","DOIUrl":null,"url":null,"abstract":"We present an experimental study of the spin rectification effects produced by ferromagnetic resonance in a NiFe wire. A system of four independent nonmagnetic contact probes was used to supply both rf and dc currents to the wire and to measure dc voltages at different locations in the wire. The rf current drives the ferromagnet’s magnetization into resonance and produces a dc photovoltage which results from the rectification of rf current in the ferromagnet with oscillating magnetization. Our 4-probe system provided a means to detect the photovoltage and separate contributions from the ferromagnet/nonmagnet contacts and the bulk of the ferromagnet. The contact photovoltage was found to increase approximately linearly with the dc bias applied to the wire. In contrast, the bulk contribution was found to be almost independent of the dc bias. By tuning properties of individual contact probes we were able to change the magnitude of the contact photovoltage and even reverse its sign. Our results highlight the different contributions to photovoltage and the importance of contact properties/nonlinearities for rectification effects in spintronic devices.","PeriodicalId":18077,"journal":{"name":"Low Temperature Physics","volume":"77 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Low Temperature Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/10.0027925","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We present an experimental study of the spin rectification effects produced by ferromagnetic resonance in a NiFe wire. A system of four independent nonmagnetic contact probes was used to supply both rf and dc currents to the wire and to measure dc voltages at different locations in the wire. The rf current drives the ferromagnet’s magnetization into resonance and produces a dc photovoltage which results from the rectification of rf current in the ferromagnet with oscillating magnetization. Our 4-probe system provided a means to detect the photovoltage and separate contributions from the ferromagnet/nonmagnet contacts and the bulk of the ferromagnet. The contact photovoltage was found to increase approximately linearly with the dc bias applied to the wire. In contrast, the bulk contribution was found to be almost independent of the dc bias. By tuning properties of individual contact probes we were able to change the magnitude of the contact photovoltage and even reverse its sign. Our results highlight the different contributions to photovoltage and the importance of contact properties/nonlinearities for rectification effects in spintronic devices.
期刊介绍:
Guided by an international editorial board, Low Temperature Physics (LTP) communicates the results of important experimental and theoretical studies conducted at low temperatures. LTP offers key work in such areas as superconductivity, magnetism, lattice dynamics, quantum liquids and crystals, cryocrystals, low-dimensional and disordered systems, electronic properties of normal metals and alloys, and critical phenomena. The journal publishes original articles on new experimental and theoretical results as well as review articles, brief communications, memoirs, and biographies.
Low Temperature Physics, a translation of the copyrighted Journal FIZIKA NIZKIKH TEMPERATUR, is a monthly journal containing English reports of current research in the field of the low temperature physics. The translation began with the 1975 issues. One volume is published annually beginning with the January issues.