Exploring the Structure of Higher Algebroids

Mikołaj Rotkiewicz
{"title":"Exploring the Structure of Higher Algebroids","authors":"Mikołaj Rotkiewicz","doi":"arxiv-2408.02194","DOIUrl":null,"url":null,"abstract":"The notion of a \\emph{higher-order algebroid}, as introduced in\n\\cite{MJ_MR_HA_comorph_2018}, generalizes the concepts of a higher-order\ntangent bundle $\\tau^k_M: \\mathrm{T}^k M \\rightarrow M$ and a (Lie) algebroid.\nThis idea is based on a (vector bundle) comorphism approach to (Lie) algebroids\nand the reduction procedure of homotopies from the level of Lie groupoids to\nthat of Lie algebroids. In brief, an alternative description of a Lie algebroid\n$(A, [\\cdot, \\cdot], \\sharp)$ is a vector bundle comorphism $\\kappa$ defined as\nthe dual of the Poisson map $\\varepsilon: \\mathrm{T}^\\ast A \\rightarrow\n\\mathrm{T} A^\\ast$ associated with the Lie algebroid $A$. The framework of\ncomorphisms has proven to be a suitable language for describing higher-order\nanalogues of Lie algebroids from the perspective of the role played by (Lie)\nalgebroids in geometric mechanics. In this work, we uncover the classical\nalgebraic structures underlying the mysterious description of higher-order\nalgebroids through comorphisms. For the case where $k=2$, we establish\none-to-one correspondence between higher-order Lie algebroids and pairs\nconsisting of a two-term representation (up to homotopy) of a Lie algebroid and\na morphism to the adjoint representation of this algebroid.","PeriodicalId":501113,"journal":{"name":"arXiv - MATH - Differential Geometry","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.02194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The notion of a \emph{higher-order algebroid}, as introduced in \cite{MJ_MR_HA_comorph_2018}, generalizes the concepts of a higher-order tangent bundle $\tau^k_M: \mathrm{T}^k M \rightarrow M$ and a (Lie) algebroid. This idea is based on a (vector bundle) comorphism approach to (Lie) algebroids and the reduction procedure of homotopies from the level of Lie groupoids to that of Lie algebroids. In brief, an alternative description of a Lie algebroid $(A, [\cdot, \cdot], \sharp)$ is a vector bundle comorphism $\kappa$ defined as the dual of the Poisson map $\varepsilon: \mathrm{T}^\ast A \rightarrow \mathrm{T} A^\ast$ associated with the Lie algebroid $A$. The framework of comorphisms has proven to be a suitable language for describing higher-order analogues of Lie algebroids from the perspective of the role played by (Lie) algebroids in geometric mechanics. In this work, we uncover the classical algebraic structures underlying the mysterious description of higher-order algebroids through comorphisms. For the case where $k=2$, we establish one-to-one correspondence between higher-order Lie algebroids and pairs consisting of a two-term representation (up to homotopy) of a Lie algebroid and a morphism to the adjoint representation of this algebroid.
探索高等阿尔格布鲁克结构
MJ_MR_HA_comorph_2018}中引入的emph{高阶形体}概念概括了高阶切向束$\tau^k_M:\这个想法是基于对(Lie)Algebroids 的(向量束)拟态方法,以及从 Lie 群到 Lie algebroids 层面的同调还原过程。简而言之,Lie algebroid$(A, [\cdot, \cdot], \sharp)$的另一种描述是定义为泊松映射$\varepsilon对偶的向量束拟态$\kappa$:\mathrm{T}^\ast A \rightarrow\mathrm{T}A^\ast$ 与 Lie algebroid $A$ 相关联。从(Lie)形体在几何力学中所扮演的角色的角度来看,变形框架已被证明是描述Lie形体的高阶类比的合适语言。在这项工作中,我们通过拟态揭示了神秘的高阶李代数描述背后的经典代数结构。对于 $k=2$ 的情况,我们建立了高阶Lie碱基与由Lie碱基的两期表示(直到同调)和该碱基的邻接表示的态构成的对之间的一一对应关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信