Asymptotic stability of the nonlocal diffusion equation with nonlocal delay

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Yiming Tang, Xin Wu, Rong Yuan, Zhaohai Ma
{"title":"Asymptotic stability of the nonlocal diffusion equation with nonlocal delay","authors":"Yiming Tang, Xin Wu, Rong Yuan, Zhaohai Ma","doi":"10.1002/mma.10385","DOIUrl":null,"url":null,"abstract":"This work focuses on the asymptotic stability of nonlocal diffusion equations in ‐dimensional space with nonlocal time‐delayed response term. To begin with, we prove and ‐decay estimates for the fundamental solution of the linear time‐delayed equation by Fourier transform. For the considered nonlocal diffusion equation, we show that if , then the solution converges globally to the trivial equilibrium time‐exponentially. If , then the solution converges globally to the trivial equilibrium time‐algebraically. Furthermore, it can be proved that when , the solution converges globally to the positive equilibrium time‐exponentially, and when , the solution converges globally to the positive equilibrium time‐algebraically. Here, , and are the coefficients of each term contained in the linear part of the nonlinear term . All convergence rates above are and ‐decay estimates. The comparison principle and low‐frequency and high‐frequency analyses are significantly effective in proofs. Finally, our theoretical results are supported by numerical simulations in different situations.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/mma.10385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

This work focuses on the asymptotic stability of nonlocal diffusion equations in ‐dimensional space with nonlocal time‐delayed response term. To begin with, we prove and ‐decay estimates for the fundamental solution of the linear time‐delayed equation by Fourier transform. For the considered nonlocal diffusion equation, we show that if , then the solution converges globally to the trivial equilibrium time‐exponentially. If , then the solution converges globally to the trivial equilibrium time‐algebraically. Furthermore, it can be proved that when , the solution converges globally to the positive equilibrium time‐exponentially, and when , the solution converges globally to the positive equilibrium time‐algebraically. Here, , and are the coefficients of each term contained in the linear part of the nonlinear term . All convergence rates above are and ‐decay estimates. The comparison principle and low‐frequency and high‐frequency analyses are significantly effective in proofs. Finally, our theoretical results are supported by numerical simulations in different situations.
具有非局部延迟的非局部扩散方程的渐近稳定性
这项工作的重点是-维空间中带有非局部延时响应项的非局部扩散方程的渐近稳定性。首先,我们通过傅立叶变换证明了线性延时方程基本解的和-衰减估计。对于所考虑的非局部扩散方程,我们证明了如果 ,那么解在全局范围内以时间-指数方式收敛于微分平衡。如果 ,那么解在全局上以时间-代数方式收敛于微分平衡。此外,还可以证明,当 、 时,解在全局上以时间-指数方式收敛于正平衡,而当 时,解在全局上以时间-代数方式收敛于正平衡。这里, 、 和 分别是非线性项线性部分所含各项的系数。以上所有收敛率均为 和 -衰减估计值。比较原理以及低频和高频分析在证明中非常有效。最后,我们的理论结果得到了不同情况下数值模拟的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信