Fine-tuning of conditional Transformers for the generation of functionally characterized enzymes

Marco Nicolini, Emanuele Saitto, Ruben E Jimenez Franco, Emanuele Cavalleri, Marco Mesiti, Aldo J Galeano Alfonso, Dario Malchiodi, Alberto Paccanaro, Peter N Robinson, Elena Casiraghi, Giorgio Valentini
{"title":"Fine-tuning of conditional Transformers for the generation of functionally characterized enzymes","authors":"Marco Nicolini, Emanuele Saitto, Ruben E Jimenez Franco, Emanuele Cavalleri, Marco Mesiti, Aldo J Galeano Alfonso, Dario Malchiodi, Alberto Paccanaro, Peter N Robinson, Elena Casiraghi, Giorgio Valentini","doi":"10.1101/2024.08.10.607430","DOIUrl":null,"url":null,"abstract":"We introduce Finenzyme, a Protein Language Model (PLM) that employs a multifaceted learning strategy based on transfer learning from a decoder-based Transformer, conditional learning using specific functional keywords, and fine-tuning to model specific Enzyme Commission (EC) categories. Using Finenzyme, we investigate the conditions under which fine-tuning enhances the prediction and generation of EC categories, showing a two-fold perplexity improvement in EC-specific categories compared to a generalist model. Our extensive experimentation shows that Finenzyme generated sequences can be very different from natural ones while retaining similar tertiary structures, functions and chemical kinetics of their natural counterparts. Importantly, the embedded representations of the generated enzymes closely resemble those of natural ones, thus making them suitable for downstream tasks. Finally, we illustrate how Finenzyme can be used in practice to generate enzymes characterized by specific functions using in-silico directed evolution, a computationally inexpensive PLM fine-tuning procedure significantly enhancing and assisting targeted enzyme engineering tasks.","PeriodicalId":501307,"journal":{"name":"bioRxiv - Bioinformatics","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.10.607430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce Finenzyme, a Protein Language Model (PLM) that employs a multifaceted learning strategy based on transfer learning from a decoder-based Transformer, conditional learning using specific functional keywords, and fine-tuning to model specific Enzyme Commission (EC) categories. Using Finenzyme, we investigate the conditions under which fine-tuning enhances the prediction and generation of EC categories, showing a two-fold perplexity improvement in EC-specific categories compared to a generalist model. Our extensive experimentation shows that Finenzyme generated sequences can be very different from natural ones while retaining similar tertiary structures, functions and chemical kinetics of their natural counterparts. Importantly, the embedded representations of the generated enzymes closely resemble those of natural ones, thus making them suitable for downstream tasks. Finally, we illustrate how Finenzyme can be used in practice to generate enzymes characterized by specific functions using in-silico directed evolution, a computationally inexpensive PLM fine-tuning procedure significantly enhancing and assisting targeted enzyme engineering tasks.
微调条件转化器,生成功能特征酶
我们介绍了一种蛋白质语言模型(PLM)--Finenzyme,它采用了基于解码器转换器的迁移学习、使用特定功能关键词的条件学习和微调来模拟特定酶委员会(EC)类别的多方面学习策略。通过使用Finenzyme,我们研究了在哪些条件下微调可增强EC类别的预测和生成,结果表明,与通用模型相比,EC特定类别的复杂性提高了两倍。我们的大量实验表明,Finenzyme生成的序列可以与天然序列大相径庭,但同时保留了与天然序列相似的三级结构、功能和化学动力学。重要的是,生成的酶的嵌入式表示与天然酶的嵌入式表示非常相似,因此适合下游任务。最后,我们说明了如何在实践中使用Finenzyme来生成以特定功能为特征的酶,使用的是一种计算成本低廉的PLM微调程序,可显著增强和协助有针对性的酶工程任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信