{"title":"Global classical solutions to an indirect chemotaxis-consumption model with signal-dependent degenerate diffusion and logistic source","authors":"Meng Zheng, Liangchen Wang","doi":"10.1007/s00033-024-02303-x","DOIUrl":null,"url":null,"abstract":"<p>This paper deals with the following indirect chemotaxis-consumption model with signal-dependent degenerate diffusion and logistic source </p><span>$$\\begin{aligned} \\left\\{ \\begin{array}{llll} u_t = \\Delta \\left( u v^\\alpha \\right) +au-bu^l,\\quad &{}x\\in \\Omega ,t>0,\\\\ v_t= \\Delta v - vw,\\quad &{}x\\in \\Omega ,t>0,\\\\ w_t = - \\delta w + u,\\quad &{}x\\in \\Omega ,t>0, \\end{array} \\right. \\end{aligned}$$</span><p>under homogeneous Neumann boundary conditions in a smooth bounded domain <span>\\(\\Omega \\subset \\mathbb {R}^n\\)</span> (<span>\\(n\\ge 1\\)</span>). Here, the parameters <span>\\(a>0\\)</span>, <span>\\(b>0\\)</span>, <span>\\(\\alpha \\ge 1\\)</span>, <span>\\(\\delta >0\\)</span> and <span>\\(l \\ge 2\\)</span>. For all suitably regular initial data, if one of the following cases holds: </p><ol>\n<li>\n<span>(i)</span>\n<p><span>\\(l > 2\\)</span>;</p>\n</li>\n<li>\n<span>(ii)</span>\n<p><span>\\(l =2, n\\le 3\\)</span>;</p>\n</li>\n<li>\n<span>(iii)</span>\n<p><span>\\(l = 2, n \\ge 4,\\)</span> and <i>b</i> is sufficiently large, then the corresponding initial boundary value problem possesses a global classical solution.</p>\n</li>\n</ol>","PeriodicalId":501481,"journal":{"name":"Zeitschrift für angewandte Mathematik und Physik","volume":"78 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift für angewandte Mathematik und Physik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00033-024-02303-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper deals with the following indirect chemotaxis-consumption model with signal-dependent degenerate diffusion and logistic source
under homogeneous Neumann boundary conditions in a smooth bounded domain \(\Omega \subset \mathbb {R}^n\) (\(n\ge 1\)). Here, the parameters \(a>0\), \(b>0\), \(\alpha \ge 1\), \(\delta >0\) and \(l \ge 2\). For all suitably regular initial data, if one of the following cases holds:
(i)
\(l > 2\);
(ii)
\(l =2, n\le 3\);
(iii)
\(l = 2, n \ge 4,\) and b is sufficiently large, then the corresponding initial boundary value problem possesses a global classical solution.