Research on nonlinear invariants of a power function over a binary field

Zebin Wang, Chenhui Jin, Ting Cui
{"title":"Research on nonlinear invariants of a power function over a binary field","authors":"Zebin Wang, Chenhui Jin, Ting Cui","doi":"10.1007/s12095-024-00734-x","DOIUrl":null,"url":null,"abstract":"<p>The nonlinear invariant attack is a new and powerful cryptanalytic method for lightweight block ciphers. The core step of such cryptanalytic method is to find the nonlinear invariant(s) of its cascade round. Generally, for an <span>\\(\\varvec{n}\\)</span>-bit width function, the time complexity <span>\\(\\varvec{O}(\\textbf{2}^{\\varvec{3n}})\\)</span> is needed to find its all nonlinear invariants. In this paper, for the positive integer <span>\\(\\varvec{m}\\)</span>, we consider the power function <span>\\(\\varvec{x}^{\\varvec{m}}\\)</span> over the finite field <span>\\(\\varvec{GF}(\\varvec{2}^{\\varvec{n}})\\)</span>, which is one of the most important cryptographic functions in recent decades. First, the nonlinear invariants of <span>\\(\\varvec{x}^{\\varvec{m}}\\)</span> is studied and we provide two mathematical toolboxes named <span>\\(\\varvec{\\sim }_{\\varvec{m}}\\)</span> <i>periodical point</i> and <span>\\(\\varvec{\\sim }_{\\varvec{m}}\\)</span> <i>equivalence class</i>. Second, we present an algorithm to get all the nonlinear invariants of <span>\\(\\varvec{x}^{\\varvec{m}}\\)</span> over <span>\\(\\varvec{GF}(\\varvec{2}^{\\varvec{n}})\\)</span> at the cost of time complexity <span>\\(\\varvec{O}(\\frac{{\\varvec{2}}^{\\varvec{n}}\\varvec{-1}}{\\varvec{\\gcd (2}^{\\varvec{n}}\\varvec{-1,m)}})\\)</span>. If the growth of <i>n</i> exceeds our tolerance above, another method is provided to get parts of the nonlinear invariants of <span>\\(\\varvec{x}^{\\varvec{m}}\\)</span>. Finally, we consider the nonlinear invariants of <span>\\(\\varvec{x}^\\textbf{3}\\)</span> over <span>\\(\\varvec{GF(2}^{\\varvec{129}})\\)</span> as an application, which is used in the block cipher MiMC. It seems impractical by existing methods. The results allow us to find several (but not all) nontrivial nonlinear invariants of such a function for the first time.</p>","PeriodicalId":10788,"journal":{"name":"Cryptography and Communications","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryptography and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12095-024-00734-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The nonlinear invariant attack is a new and powerful cryptanalytic method for lightweight block ciphers. The core step of such cryptanalytic method is to find the nonlinear invariant(s) of its cascade round. Generally, for an \(\varvec{n}\)-bit width function, the time complexity \(\varvec{O}(\textbf{2}^{\varvec{3n}})\) is needed to find its all nonlinear invariants. In this paper, for the positive integer \(\varvec{m}\), we consider the power function \(\varvec{x}^{\varvec{m}}\) over the finite field \(\varvec{GF}(\varvec{2}^{\varvec{n}})\), which is one of the most important cryptographic functions in recent decades. First, the nonlinear invariants of \(\varvec{x}^{\varvec{m}}\) is studied and we provide two mathematical toolboxes named \(\varvec{\sim }_{\varvec{m}}\) periodical point and \(\varvec{\sim }_{\varvec{m}}\) equivalence class. Second, we present an algorithm to get all the nonlinear invariants of \(\varvec{x}^{\varvec{m}}\) over \(\varvec{GF}(\varvec{2}^{\varvec{n}})\) at the cost of time complexity \(\varvec{O}(\frac{{\varvec{2}}^{\varvec{n}}\varvec{-1}}{\varvec{\gcd (2}^{\varvec{n}}\varvec{-1,m)}})\). If the growth of n exceeds our tolerance above, another method is provided to get parts of the nonlinear invariants of \(\varvec{x}^{\varvec{m}}\). Finally, we consider the nonlinear invariants of \(\varvec{x}^\textbf{3}\) over \(\varvec{GF(2}^{\varvec{129}})\) as an application, which is used in the block cipher MiMC. It seems impractical by existing methods. The results allow us to find several (but not all) nontrivial nonlinear invariants of such a function for the first time.

Abstract Image

二进制域上幂函数的非线性不变式研究
非线性不变量攻击是一种针对轻量级块密码的新型、强大的密码分析方法。这种密码分析方法的核心步骤是找到其级联轮的非线性不变量。一般来说,对于一个宽度为 \(\varvec{n}\)bit 的函数,要找到它的所有非线性不变量,需要的时间复杂度为 \(\varvec{O}(\textbf{2}^{\varvec{3n}})\) 。在本文中,对于正整数 \(\varvec{m}\),我们考虑有限域 \(\varvec{GF}(\varvec{2}^{varvec{n}})\上的幂函数 \(\varvec{x}^{\varvec{m}\}),它是近几十年来最重要的加密函数之一。首先,我们研究了 \(\varvec{x}^{varvec{m}}\) 的非线性不变量,并提供了两个数学工具箱,分别命名为 \(\varvec{sim }_{\varvec{m}}\) 周期点和 \(\varvec{sim }_{\varvec{m}}\) 等价类。其次、我们提出了一种算法来获取 \(\varvec{x}^{varvec{m}} 上 \(\varvec{GF}(\varvec{2}^{\varvec{n}})\) 的所有非线性不变式,代价是时间复杂度 \(\varvec{O}(\frac{\varvec{2}}^{\varvec{n}}\varvec{-1}}{\varvec{\gcd (2}^{\varvec{n}}\varvec{-1,m)}})\).如果 n 的增长超过了我们上面的容许范围,我们会提供另一种方法来得到 \(\varvec{x}^{\varvec{m}}\) 的部分非线性不变式。最后,我们考虑了 \(\varvec{GF(2}^{\varvec{129}}\) 上 \(\varvec{x}^\textbf{3}\) 的非线性不变式的应用,它被用于块密码 MiMC。根据现有方法,这似乎是不切实际的。这些结果让我们第一次找到了这种函数的几个(但不是全部)非难非线性不变式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信