{"title":"Time series monitoring and analysis of Pakistan’s mangrove using Sentinel-2 data","authors":"Syed Ahmed Raza, Li Zhang, Jian Zuo, Bowei Chen","doi":"10.3389/fenvs.2024.1416450","DOIUrl":null,"url":null,"abstract":"Sustainable Development Goal-14 (SDG-14) directly demands the protection, conservation, restoration, and sustainable management of the global mangrove ecosystem. Assessment of the development Pakistan has made toward the sustainable management of mangrove ecosystems necessitates the remote sensing-based evaluation of national-level mangrove cover. Using Google Earth Engine (GEE) for geoprocessing 12,000+ 10-m high-spatial resolution Sentinel-2 time-series images (2016–23) and applying random forest (RF) classifier, the current research provides the latest spatial distribution of mangroves along Pakistan’s coastline and changes observed for a duration of 8 years. Additionally, this research provides the first spatiotemporal health assessment of Pakistan’s national mangrove cover as well. Rational analysis of the results indicated splitting the entire timeline based on two seasons (Jan–Jun and Jul–Dec). Results revealed an overall increase of 1,210 km<jats:sup>2</jats:sup> (2023) in the mangrove cover on the national-level; a 3.42 km<jats:sup>2</jats:sup> average annual increase from 2016 (1,186 km<jats:sup>2</jats:sup>). Mangrove gain/loss assessment based on the land use land cover (LULC) transition matrix illustrated 223 km<jats:sup>2</jats:sup> gain and 199 km<jats:sup>2</jats:sup> loss; a 24 km<jats:sup>2</jats:sup> net gain. Declines of 20.28% and 7.91% were found in maximum- and mean-NDVI (2016-23), depicting the deteriorating mangrove health conditions. Likewise, significant Sen’s slope analysis (<jats:italic>p</jats:italic> &lt; 0.05) indicated that 88.8% of all the mangrove-NDVI pixels exhibited an overall decrease, whereas 11.2% pixels showed an overall increase (2016-23). It was concluded that despite showing a growth in the extent, mangrove cover in Pakistan has shown a decline in health, primarily due to deforestation for urban operations and sea-level rise, still making them vulnerable and potentially leading to a disrupted ecosystem, including carbon release in the atmosphere. This study will assist in the formulation of mangrove conservation and management strategies, whereas future research can explore the potentials of land surface temperature (LST) and evapotranspiration in combination to the NDVI for an in-depth analysis of the health status of mangroves.","PeriodicalId":12460,"journal":{"name":"Frontiers in Environmental Science","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Environmental Science","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3389/fenvs.2024.1416450","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Sustainable Development Goal-14 (SDG-14) directly demands the protection, conservation, restoration, and sustainable management of the global mangrove ecosystem. Assessment of the development Pakistan has made toward the sustainable management of mangrove ecosystems necessitates the remote sensing-based evaluation of national-level mangrove cover. Using Google Earth Engine (GEE) for geoprocessing 12,000+ 10-m high-spatial resolution Sentinel-2 time-series images (2016–23) and applying random forest (RF) classifier, the current research provides the latest spatial distribution of mangroves along Pakistan’s coastline and changes observed for a duration of 8 years. Additionally, this research provides the first spatiotemporal health assessment of Pakistan’s national mangrove cover as well. Rational analysis of the results indicated splitting the entire timeline based on two seasons (Jan–Jun and Jul–Dec). Results revealed an overall increase of 1,210 km2 (2023) in the mangrove cover on the national-level; a 3.42 km2 average annual increase from 2016 (1,186 km2). Mangrove gain/loss assessment based on the land use land cover (LULC) transition matrix illustrated 223 km2 gain and 199 km2 loss; a 24 km2 net gain. Declines of 20.28% and 7.91% were found in maximum- and mean-NDVI (2016-23), depicting the deteriorating mangrove health conditions. Likewise, significant Sen’s slope analysis (p < 0.05) indicated that 88.8% of all the mangrove-NDVI pixels exhibited an overall decrease, whereas 11.2% pixels showed an overall increase (2016-23). It was concluded that despite showing a growth in the extent, mangrove cover in Pakistan has shown a decline in health, primarily due to deforestation for urban operations and sea-level rise, still making them vulnerable and potentially leading to a disrupted ecosystem, including carbon release in the atmosphere. This study will assist in the formulation of mangrove conservation and management strategies, whereas future research can explore the potentials of land surface temperature (LST) and evapotranspiration in combination to the NDVI for an in-depth analysis of the health status of mangroves.
期刊介绍:
Our natural world is experiencing a state of rapid change unprecedented in the presence of humans. The changes affect virtually all physical, chemical and biological systems on Earth. The interaction of these systems leads to tipping points, feedbacks and amplification of effects. In virtually all cases, the causes of environmental change can be traced to human activity through either direct interventions as a consequence of pollution, or through global warming from greenhouse case emissions. Well-formulated and internationally-relevant policies to mitigate the change, or adapt to the consequences, that will ensure our ability to thrive in the coming decades are badly needed. Without proper understanding of the processes involved, and deep understanding of the likely impacts of bad decisions or inaction, the security of food, water and energy is a risk. Left unchecked shortages of these basic commodities will lead to migration, global geopolitical tension and conflict. This represents the major challenge of our time. We are the first generation to appreciate the problem and we will be judged in future by our ability to determine and take the action necessary. Appropriate knowledge of the condition of our natural world, appreciation of the changes occurring, and predictions of how the future will develop are requisite to the definition and implementation of solutions.
Frontiers in Environmental Science publishes research at the cutting edge of knowledge of our natural world and its various intersections with society. It bridges between the identification and measurement of change, comprehension of the processes responsible, and the measures needed to reduce their impact. Its aim is to assist the formulation of policies, by offering sound scientific evidence on environmental science, that will lead to a more inhabitable and sustainable world for the generations to come.