Conditional Sampling with Monotone GANs: From Generative Models to Likelihood-Free Inference

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Ricardo Baptista, Bamdad Hosseini, Nikola B. Kovachki, Youssef M. Marzouk
{"title":"Conditional Sampling with Monotone GANs: From Generative Models to Likelihood-Free Inference","authors":"Ricardo Baptista, Bamdad Hosseini, Nikola B. Kovachki, Youssef M. Marzouk","doi":"10.1137/23m1581546","DOIUrl":null,"url":null,"abstract":"SIAM/ASA Journal on Uncertainty Quantification, Volume 12, Issue 3, Page 868-900, September 2024. <br/> Abstract.We present a novel framework for conditional sampling of probability measures, using block triangular transport maps. We develop the theoretical foundations of block triangular transport in a Banach space setting, establishing general conditions under which conditional sampling can be achieved and drawing connections between monotone block triangular maps and optimal transport. Based on this theory, we then introduce a computational approach, called monotone generative adversarial networks (M-GANs), to learn suitable block triangular maps. Our algorithm uses only samples from the underlying joint probability measure and is hence likelihood-free. Numerical experiments with M-GAN demonstrate accurate sampling of conditional measures in synthetic examples, Bayesian inverse problems involving ordinary and partial differential equations, and probabilistic image inpainting.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1137/23m1581546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM/ASA Journal on Uncertainty Quantification, Volume 12, Issue 3, Page 868-900, September 2024.
Abstract.We present a novel framework for conditional sampling of probability measures, using block triangular transport maps. We develop the theoretical foundations of block triangular transport in a Banach space setting, establishing general conditions under which conditional sampling can be achieved and drawing connections between monotone block triangular maps and optimal transport. Based on this theory, we then introduce a computational approach, called monotone generative adversarial networks (M-GANs), to learn suitable block triangular maps. Our algorithm uses only samples from the underlying joint probability measure and is hence likelihood-free. Numerical experiments with M-GAN demonstrate accurate sampling of conditional measures in synthetic examples, Bayesian inverse problems involving ordinary and partial differential equations, and probabilistic image inpainting.
单调 GAN 的条件采样:从生成模型到无似然推理
SIAM/ASA 不确定性量化期刊》,第 12 卷,第 3 期,第 868-900 页,2024 年 9 月。 摘要.我们提出了一个利用块三角传输映射对概率计量进行条件采样的新框架。我们在巴拿赫空间环境中发展了块三角形传输的理论基础,建立了实现条件采样的一般条件,并在单调块三角形映射和最优传输之间建立了联系。在此理论基础上,我们引入了一种称为单调生成对抗网络(M-GANs)的计算方法来学习合适的块三角映射。我们的算法只使用底层联合概率度量的样本,因此是无似然的。M-GAN 的数值实验证明了在合成实例、涉及常微分方程和偏微分方程的贝叶斯逆问题以及概率图像绘制中条件度量的精确采样。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信