Third-order corrections to the slow-roll expansion: calculation and constraints with Planck, ACT, SPT, and BICEP/Keck

Mario Ballardini, Alessandro Davoli, Salvatore Samuele Sirletti
{"title":"Third-order corrections to the slow-roll expansion: calculation and constraints with Planck, ACT, SPT, and BICEP/Keck","authors":"Mario Ballardini, Alessandro Davoli, Salvatore Samuele Sirletti","doi":"arxiv-2408.05210","DOIUrl":null,"url":null,"abstract":"We investigate the primordial power spectra (PPS) of scalar and tensor\nperturbations, derived through the slow-roll approximation. By solving the\nMukhanov-Sasaki equation and the tensor perturbation equation with Green's\nfunction techniques, we extend the PPS calculations to third-order corrections,\nproviding a comprehensive perturbative expansion in terms of slow-roll\nparameters. We investigate the accuracy of the analytic predictions with the\nnumerical solutions of the perturbation equations for a selection of\nsingle-field slow-roll inflationary models. We derive the constraints on the\nHubble flow functions $\\epsilon_i$ from Planck, ACT, SPT, and BICEP/Keck data.\nWe find an upper bound $\\epsilon_1 \\lesssim 0.002$ at 95\\% CL dominated by\nBICEP/Keck data and robust to all the different combination of datasets. We\nderive the constraint $\\epsilon_2 \\simeq 0.031 \\pm 0.004$ at 68\\% confidence\nlevel (CL) from the combination of Planck data and late-time probes such as\nbaryon acoustic oscillations, redshift space distortions, and supernovae data\nat first order in the slow-roll expansion. The uncertainty on $\\epsilon_2$ gets\nlarger including second- and third-order corrections, allowing for a\nnon-vanishing running and running of the running respectively, leading to\n$\\epsilon_2 \\simeq 0.034 \\pm 0.007$ at 68\\% CL. We find $\\epsilon_3 \\simeq 0.1\n\\pm 0.4$ at 95\\% CL both at second and at third order in the slow-roll\nexpansion of the spectra. $\\epsilon_4$ remains always unconstrained. The\ncombination of Planck and SPT data leads to slightly tighter constraints on\n$\\epsilon_2$ and $\\epsilon_3$. On the contrary, the combination of Planck data\nwith ACT measurements, which point to higher values of the scalar spectral\nindex compared to Planck findings, leads to shifts in the means and maximum\nlikelihood values for $\\epsilon_2$ and $\\epsilon_3$.","PeriodicalId":501207,"journal":{"name":"arXiv - PHYS - Cosmology and Nongalactic Astrophysics","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Cosmology and Nongalactic Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.05210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the primordial power spectra (PPS) of scalar and tensor perturbations, derived through the slow-roll approximation. By solving the Mukhanov-Sasaki equation and the tensor perturbation equation with Green's function techniques, we extend the PPS calculations to third-order corrections, providing a comprehensive perturbative expansion in terms of slow-roll parameters. We investigate the accuracy of the analytic predictions with the numerical solutions of the perturbation equations for a selection of single-field slow-roll inflationary models. We derive the constraints on the Hubble flow functions $\epsilon_i$ from Planck, ACT, SPT, and BICEP/Keck data. We find an upper bound $\epsilon_1 \lesssim 0.002$ at 95\% CL dominated by BICEP/Keck data and robust to all the different combination of datasets. We derive the constraint $\epsilon_2 \simeq 0.031 \pm 0.004$ at 68\% confidence level (CL) from the combination of Planck data and late-time probes such as baryon acoustic oscillations, redshift space distortions, and supernovae data at first order in the slow-roll expansion. The uncertainty on $\epsilon_2$ gets larger including second- and third-order corrections, allowing for a non-vanishing running and running of the running respectively, leading to $\epsilon_2 \simeq 0.034 \pm 0.007$ at 68\% CL. We find $\epsilon_3 \simeq 0.1 \pm 0.4$ at 95\% CL both at second and at third order in the slow-roll expansion of the spectra. $\epsilon_4$ remains always unconstrained. The combination of Planck and SPT data leads to slightly tighter constraints on $\epsilon_2$ and $\epsilon_3$. On the contrary, the combination of Planck data with ACT measurements, which point to higher values of the scalar spectral index compared to Planck findings, leads to shifts in the means and maximum likelihood values for $\epsilon_2$ and $\epsilon_3$.
慢滚扩展的三阶修正:普朗克、ACT、SPT 和 BICEP/Keck 的计算与约束
我们研究了标量和张量扰动的原始功率谱(PPS),它是通过慢滚近似得到的。通过用格林函数技术求解穆哈诺夫-萨崎方程和张量扰动方程,我们将 PPS 计算扩展到三阶修正,提供了以慢滚参数为基础的全面扰动扩展。我们研究了单场慢滚暴胀模型的扰动方程数值解的分析预测的准确性。我们从普朗克、ACT、SPT和BICEP/Keck数据中推导出哈勃流函数$\epsilon_i$的约束条件。我们发现在95%CL时,$\epsilon_1 \lesssim 0.002$的上界由BICEP/Keck数据主导,并且对所有不同的数据集组合都是稳健的。在68%置信水平(CL)下,我们从普朗克数据和重子声振荡、红移空间扭曲和超新星数据等晚期探测器的组合中,得出了慢卷膨胀一阶的约束$\epsilon_2 \simeq 0.031 \pm 0.004$。包括二阶和三阶修正在内的$\epsilon_2$的不确定性变大了,分别允许了非消失运行和运行的运行,导致在68\% CL时$\epsilon_2 \simeq 0.034 \pm 0.007$。我们发现在 95\% CL 时,在光谱的慢速滚动扩展中,$epsilon_3 在二阶和三阶都是 0.1\pm 0.4$。epsilon_4$始终是无约束的。将普朗克数据和 SPT 数据结合起来,对 $\epsilon_2$ 和 $\epsilon_3$ 的约束会稍微严格一些。与此相反,普朗克数据与ACT测量结果的结合(与普朗克的发现相比,ACT测量结果指向更高的标量光谱指数值)导致了$\epsilon_2$和$\epsilon_3$的均值和最大似然值的移动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信