Modelling DSA, FAST and CRAFT surveys in a z-DM analysis and constraining a minimum FRB energy

Jordan Hoffmann, Clancy W. James, Marcin Glowacki, Jason X. Prochaska, Alexa C. Gordon, Adam T. Deller, Ryan M. Shannon, Stuart D. Ryder
{"title":"Modelling DSA, FAST and CRAFT surveys in a z-DM analysis and constraining a minimum FRB energy","authors":"Jordan Hoffmann, Clancy W. James, Marcin Glowacki, Jason X. Prochaska, Alexa C. Gordon, Adam T. Deller, Ryan M. Shannon, Stuart D. Ryder","doi":"arxiv-2408.04878","DOIUrl":null,"url":null,"abstract":"Fast radio burst (FRB) science primarily revolves around two facets: the\norigin of these bursts and their use in cosmological studies. This work follows\nfrom previous redshift-dispersion measure ($z$-DM) analyses in which we model\ninstrumental biases and simultaneously fit population parameters and\ncosmological parameters to the observed population of FRBs. This sheds light on\nboth the progenitors of FRBs and cosmological questions. Previously, we have\ncompleted similar analyses with data from the Australian Square Kilometer Array\nPathfinder (ASKAP) and the Murriyang (Parkes) Multibeam system. With this\nmanuscript, we additionally incorporate data from the Deep Synoptic Array (DSA)\nand the Five-hundred-meter Aperture Spherical Telescope (FAST), invoke a Markov\nchain Monte Carlo (MCMC) sampler and implement uncertainty in the Galactic DM\ncontributions. The latter leads to larger uncertainties in derived model\nparameters than previous estimates despite the additional data. We provide\nrefined constraints on FRB population parameters and derive a new constraint on\nthe minimum FRB energy of log$\\,E_{\\mathrm{min}}$(erg)=39.49$^{+0.39}_{-1.48}$\nwhich is significantly higher than bursts detected from strong repeaters. This\nresult may indicate a low-energy turnover in the luminosity function or may\nsuggest that strong repeaters have a different luminosity function to single\nbursts. We also predict that FAST will detect 25-41% of their FRBs at $z\n\\gtrsim 2$ and DSA will detect 2-12% of their FRBs at $z \\gtrsim 1$.","PeriodicalId":501207,"journal":{"name":"arXiv - PHYS - Cosmology and Nongalactic Astrophysics","volume":"55 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Cosmology and Nongalactic Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Fast radio burst (FRB) science primarily revolves around two facets: the origin of these bursts and their use in cosmological studies. This work follows from previous redshift-dispersion measure ($z$-DM) analyses in which we model instrumental biases and simultaneously fit population parameters and cosmological parameters to the observed population of FRBs. This sheds light on both the progenitors of FRBs and cosmological questions. Previously, we have completed similar analyses with data from the Australian Square Kilometer Array Pathfinder (ASKAP) and the Murriyang (Parkes) Multibeam system. With this manuscript, we additionally incorporate data from the Deep Synoptic Array (DSA) and the Five-hundred-meter Aperture Spherical Telescope (FAST), invoke a Markov chain Monte Carlo (MCMC) sampler and implement uncertainty in the Galactic DM contributions. The latter leads to larger uncertainties in derived model parameters than previous estimates despite the additional data. We provide refined constraints on FRB population parameters and derive a new constraint on the minimum FRB energy of log$\,E_{\mathrm{min}}$(erg)=39.49$^{+0.39}_{-1.48}$ which is significantly higher than bursts detected from strong repeaters. This result may indicate a low-energy turnover in the luminosity function or may suggest that strong repeaters have a different luminosity function to single bursts. We also predict that FAST will detect 25-41% of their FRBs at $z \gtrsim 2$ and DSA will detect 2-12% of their FRBs at $z \gtrsim 1$.
在z-DM分析中模拟DSA、FAST和CRAFT勘测,并约束最小FRB能量
快速射电暴(FRB)科学主要围绕两个方面:这些射电暴的起源及其在宇宙学研究中的应用。这项工作沿袭了先前的红移-色散测量($z$-DM)分析,我们建立了仪器偏差模型,并同时拟合了观测到的FRB群体参数和宇宙学参数。这揭示了FRB的起源和宇宙学问题。在此之前,我们已经利用澳大利亚平方公里阵列探路者(ASKAP)和墨里阳(帕克斯)多波束系统的数据完成了类似的分析。在这篇手稿中,我们增加了来自深同步阵列(DSA)和五百米孔径球面望远镜(FAST)的数据,调用了马尔可夫链蒙特卡洛(MCMC)采样器,并实现了银河DM贡献的不确定性。尽管有额外的数据,但后者导致推导出的模型参数的不确定性比以前的估计值更大。我们提供了对FRB群体参数的精细约束,并推导出一个新的FRB最小能量约束,即log$\,E_{\mathrm{min}}$(erg)=39.49$^{+0.39}_{-1.48}$,它明显高于从强中继器探测到的爆发。这一结果可能表明了光度函数的低能量转换,也可能暗示了强中继器的光度函数与单次爆发不同。我们还预测,FAST将在$z\gtrsim 2$探测到25-41%的FRB,而DSA将在$z\gtrsim 1$探测到2-12%的FRB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信