The Generic Failure of Lower-Semicontinuity for the Linear Distortion Functional

Pub Date : 2024-08-07 DOI:10.1007/s40315-024-00555-2
Mohsen Hashemi, Gaven J. Martin
{"title":"The Generic Failure of Lower-Semicontinuity for the Linear Distortion Functional","authors":"Mohsen Hashemi, Gaven J. Martin","doi":"10.1007/s40315-024-00555-2","DOIUrl":null,"url":null,"abstract":"<p>We consider the convexity properties of distortion functionals, particularly the linear distortion, defined for homeomorphisms of domains in Euclidean <i>n</i>-spaces, <span>\\(n\\ge 3\\)</span>. The inner and outer distortion functionals are lower semi-continuous in all dimensions and so for the curve modulus or analytic definitions of quasiconformality it ifollows that if <span>\\( \\{ f_{n} \\}_{n=1}^{\\infty } \\)</span> is a sequence of <i>K</i>-quasiconformal mappings (here <i>K</i> depends on the particular distortion functional but is the same for every element of the sequence) which converges locally uniformly to a mapping <i>f</i>, then this limit function is also <i>K</i>-quasiconformal. Despite a widespread belief that this was also true for the geometric definition of quasiconformality (defined through the linear distortion <span>\\(H({f_{n}})\\)</span>), T. Iwaniec gave a specific and surprising example to show that the linear distortion functional is not always lower-semicontinuous on uniformly converging sequences of quasiconformal mappings. Here we show that this failure of lower-semicontinuity is common, perhaps generic in the sense that under mild restrictions on a quasiconformal <i>f</i>, there is a sequence <span>\\( \\{f_{n} \\}_{n=1}^{\\infty } \\)</span> with <span>\\( {f_{n}}\\rightarrow {f}\\)</span> locally uniformly and with <span>\\(\\limsup _{n\\rightarrow \\infty } H( {f_{n}})&lt;H( {f})\\)</span>. Our main result shows this is true for affine mappings. Addressing conjectures of Gehring and Iwaniec we show the jump up in the limit can be arbitrarily large and give conjecturally sharp bounds: for each <span>\\(\\alpha &lt;\\sqrt{2}\\)</span> there is <span>\\({f_{n}}\\rightarrow {f}\\)</span> locally uniformly with <i>f</i> affine and </p><span>$$\\begin{aligned} \\alpha \\; \\limsup _{n\\rightarrow \\infty } H( {f_{n}}) &lt; H( {f}) \\end{aligned}$$</span><p>We conjecture <span>\\(\\sqrt{2}\\)</span> to be best possible.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40315-024-00555-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the convexity properties of distortion functionals, particularly the linear distortion, defined for homeomorphisms of domains in Euclidean n-spaces, \(n\ge 3\). The inner and outer distortion functionals are lower semi-continuous in all dimensions and so for the curve modulus or analytic definitions of quasiconformality it ifollows that if \( \{ f_{n} \}_{n=1}^{\infty } \) is a sequence of K-quasiconformal mappings (here K depends on the particular distortion functional but is the same for every element of the sequence) which converges locally uniformly to a mapping f, then this limit function is also K-quasiconformal. Despite a widespread belief that this was also true for the geometric definition of quasiconformality (defined through the linear distortion \(H({f_{n}})\)), T. Iwaniec gave a specific and surprising example to show that the linear distortion functional is not always lower-semicontinuous on uniformly converging sequences of quasiconformal mappings. Here we show that this failure of lower-semicontinuity is common, perhaps generic in the sense that under mild restrictions on a quasiconformal f, there is a sequence \( \{f_{n} \}_{n=1}^{\infty } \) with \( {f_{n}}\rightarrow {f}\) locally uniformly and with \(\limsup _{n\rightarrow \infty } H( {f_{n}})<H( {f})\). Our main result shows this is true for affine mappings. Addressing conjectures of Gehring and Iwaniec we show the jump up in the limit can be arbitrarily large and give conjecturally sharp bounds: for each \(\alpha <\sqrt{2}\) there is \({f_{n}}\rightarrow {f}\) locally uniformly with f affine and

$$\begin{aligned} \alpha \; \limsup _{n\rightarrow \infty } H( {f_{n}}) < H( {f}) \end{aligned}$$

We conjecture \(\sqrt{2}\) to be best possible.

Abstract Image

分享
查看原文
线性失真函数的下半连续性一般失效
我们考虑了变形函数的凸性,特别是线性变换,它是为欧几里得n空间中域的同构定义的,即 \( n\ge 3\).内扭曲和外扭曲函数在所有维度上都是下半连续的,因此对于曲线模量或准共形性的解析定义来说,如果 \( \{ f_{n} \}_{n=1}^{\infty } \) 是一个 K- 准共形映射序列(这里的 K 取决于特定的扭曲函数,但对于序列中的每个元素都是相同的),它局部均匀地收敛于一个映射 f,那么这个极限函数也是 K- 准共形的、那么这个极限函数也是 K-类方程。尽管人们普遍认为这对准共形性的几何定义(通过线性失真 \(H({f_{n}})\来定义)也是正确的,但 T. Iwaniec 还是给出了一个具体而令人惊讶的例子,说明线性失真函数在均匀收敛的准共形映射序列上并不总是下micontinuous 的。在这里,我们证明了这种低值连续性的失效是常见的,也许是通用的,即在对准形式 f 的温和限制下,有一个序列 ( ( {f_{n} \}_{n=1}^{\infty } \)与 \( {f_{n}}\rightarrow {f}\) 局部均匀,并且与 \(\limsup _{n\rightarrow \infty } \) 局部均匀。H({f_{n}})<H({f})\)。我们的主要结果表明这对于仿射映射是正确的。针对 Gehring 和 Iwaniec 的猜想,我们证明了极限中的跳跃可以是任意大的,并给出了猜想中的尖锐边界:对于每一个 \(α <\sqrt{2}\) 都有\({f_{n}}\rightarrow {f}\)局部均匀地与 f 仿射且 $$\begin{aligned}\H( {f_{n}}rightarrow {f}}H( {f_{n}}) < H( {f}) \end{aligned}$$我们猜想 \(\sqrt{2}\)是最好的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信