Rational Curves on Real Classical Groups

Zijia Li, Ke Ye
{"title":"Rational Curves on Real Classical Groups","authors":"Zijia Li, Ke Ye","doi":"arxiv-2408.04453","DOIUrl":null,"url":null,"abstract":"This paper is concerned with rational curves on real classical groups. Our\ncontributions are three-fold: (i) We determine the structure of quadratic\nrational curves on real classical groups. As a consequence, we completely\nclassify quadratic rational curves on $\\mathrm{U}_n$,\n$\\mathrm{O}_n(\\mathbb{R})$, $\\mathrm{O}_{n-1,1}(\\mathbb{R})$ and\n$\\mathrm{O}_{n-2,2}(\\mathbb{R})$. (ii) We prove a decomposition theorem for\nrational curves on real classical groups, which can be regarded as a\nnon-commutative generalization of the fundamental theorem of algebra and\npartial fraction decomposition. (iii) As an application of (i) and (ii), we\ngeneralize Kempe's Universality Theorem to rational curves on homogeneous\nspaces.","PeriodicalId":501037,"journal":{"name":"arXiv - MATH - Group Theory","volume":"57 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is concerned with rational curves on real classical groups. Our contributions are three-fold: (i) We determine the structure of quadratic rational curves on real classical groups. As a consequence, we completely classify quadratic rational curves on $\mathrm{U}_n$, $\mathrm{O}_n(\mathbb{R})$, $\mathrm{O}_{n-1,1}(\mathbb{R})$ and $\mathrm{O}_{n-2,2}(\mathbb{R})$. (ii) We prove a decomposition theorem for rational curves on real classical groups, which can be regarded as a non-commutative generalization of the fundamental theorem of algebra and partial fraction decomposition. (iii) As an application of (i) and (ii), we generalize Kempe's Universality Theorem to rational curves on homogeneous spaces.
实经典群上的有理曲线
本文主要研究实经典群上的有理曲线。我们的贡献有三个方面:(i) 我们确定了实经典群上二次有理曲线的结构。因此,我们对 $\mathrm{U}_n$, $\mathrm{O}_n(\mathbb{R})$, $\mathrm{O}_{n-1,1}(\mathbb{R})$ 和 $\mathrm{O}_{n-2,2}(\mathbb{R})$ 上的二次有理曲线进行了完全分类。(ii) 我们证明了实经典群上有理曲线的分解定理,它可以看作是代数基本定理和部分分数分解的非交换广义化。(iii) 作为(i)和(ii)的应用,我们将 Kempe 的普遍性定理推广到同质空间上的有理曲线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信