On the Number of Non-equivalent Parameterized Squares in a String

Rikuya Hamai, Kazushi Taketsugu, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai
{"title":"On the Number of Non-equivalent Parameterized Squares in a String","authors":"Rikuya Hamai, Kazushi Taketsugu, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai","doi":"arxiv-2408.04920","DOIUrl":null,"url":null,"abstract":"A string $s$ is called a parameterized square when $s = xy$ for strings $x$,\n$y$ and $x$ and $y$ are parameterized equivalent. Kociumaka et al. showed the\nnumber of parameterized squares, which are non-equivalent in parameterized\nequivalence, in a string of length $n$ that contains $\\sigma$ distinct\ncharacters is at most $2 \\sigma! n$ [TCS 2016]. In this paper, we show that the\nmaximum number of non-equivalent parameterized squares is less than $\\sigma n$,\nwhich significantly improves the best-known upper bound by Kociumaka et al.","PeriodicalId":501216,"journal":{"name":"arXiv - CS - Discrete Mathematics","volume":"370 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04920","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A string $s$ is called a parameterized square when $s = xy$ for strings $x$, $y$ and $x$ and $y$ are parameterized equivalent. Kociumaka et al. showed the number of parameterized squares, which are non-equivalent in parameterized equivalence, in a string of length $n$ that contains $\sigma$ distinct characters is at most $2 \sigma! n$ [TCS 2016]. In this paper, we show that the maximum number of non-equivalent parameterized squares is less than $\sigma n$, which significantly improves the best-known upper bound by Kociumaka et al.
关于字符串中非等价参数化正方形的数量
当$x$,$y$字符串的$s=xy$且$x$和$y$的参数化等价时,字符串$s$被称为参数化正方形。Kociumaka 等人的研究表明,在长度为 $n$ 的字符串中,包含 $\sigma$ 不同字符的参数化正方形的数量最多为 2 \sigma!n$[TCS 2016]。在本文中,我们证明了非等价参数化正方形的最大数目小于 $\sigma n$,这大大改进了 Kociumaka 等人的已知上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信