Optimal model reference adaptive fractional-order proportional integral derivative control of idle speed system under varying disturbances

IF 1.4 4区 计算机科学 Q4 AUTOMATION & CONTROL SYSTEMS
Yi Yang, Haiyan Henry Zhang
{"title":"Optimal model reference adaptive fractional-order proportional integral derivative control of idle speed system under varying disturbances","authors":"Yi Yang, Haiyan Henry Zhang","doi":"10.1177/09596518241266670","DOIUrl":null,"url":null,"abstract":"This paper presents an original model reference adaptive fractional-order proportional integral derivative (MRAC-FOPID) controller for the stabilization of the idle speed system in an internal combustion engine under different external load torques. The MRAC-FOPID controller is developed by aligning the changing of FOPID controller’s five parameters with a cost function’s negative gradient direction. Numerical simulations are presented and show that the proposed MRAC-FOPID controller uses 49% more control effort to achieve 72% and 40% more reductions in the relative integral squared error (RISE) and relative integral time absolute error (RITAE), respectively, compared to an optimized model reference adaptive proportional integral derivative (MRAC-PID) controller. Furthermore, the MRAC-FOPID controller is found to have better robustness than other two previously published optimal controllers, with only a 3.07% relative change in RISE when facing variable disturbance. This work also highlights a novel Matlab/Simulink based implementation of the adaptively-varying-order derivative operators, which cannot only be extended to the design of other adaptive fractional-order controllers but may also facilitate hardware realization of the MRAC-FOPID controller in real idle speed systems.","PeriodicalId":20638,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering","volume":"158 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/09596518241266670","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an original model reference adaptive fractional-order proportional integral derivative (MRAC-FOPID) controller for the stabilization of the idle speed system in an internal combustion engine under different external load torques. The MRAC-FOPID controller is developed by aligning the changing of FOPID controller’s five parameters with a cost function’s negative gradient direction. Numerical simulations are presented and show that the proposed MRAC-FOPID controller uses 49% more control effort to achieve 72% and 40% more reductions in the relative integral squared error (RISE) and relative integral time absolute error (RITAE), respectively, compared to an optimized model reference adaptive proportional integral derivative (MRAC-PID) controller. Furthermore, the MRAC-FOPID controller is found to have better robustness than other two previously published optimal controllers, with only a 3.07% relative change in RISE when facing variable disturbance. This work also highlights a novel Matlab/Simulink based implementation of the adaptively-varying-order derivative operators, which cannot only be extended to the design of other adaptive fractional-order controllers but may also facilitate hardware realization of the MRAC-FOPID controller in real idle speed systems.
变化扰动下空转速度系统的最优模型参考自适应分数阶比例积分导数控制
本文提出了一种独创的模型参考自适应分数阶比例积分导数(MRAC-FOPID)控制器,用于稳定内燃机在不同外部负载扭矩下的怠速系统。MRAC-FOPID 控制器是通过使 FOPID 控制器五个参数的变化与代价函数的负梯度方向保持一致而开发的。数值模拟结果表明,与优化的模型参考自适应比例积分导数(MRAC-PID)控制器相比,所提出的 MRAC-FOPID 控制器的控制力度增加了 49%,相对积分平方误差(RISE)和相对积分时间绝对误差(RITAE)分别减少了 72% 和 40%。此外,MRAC-FOPID 控制器的鲁棒性优于之前发布的其他两个优化控制器,在面对可变干扰时,RISE 的相对变化率仅为 3.07%。这项研究还重点介绍了基于 Matlab/Simulink 的自适应变化阶导数算子的新型实现方法,它不仅可以扩展到其他自适应分数阶控制器的设计,还可以促进 MRAC-FOPID 控制器在实际怠速系统中的硬件实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.50
自引率
18.80%
发文量
99
审稿时长
4.2 months
期刊介绍: Systems and control studies provide a unifying framework for a wide range of engineering disciplines and industrial applications. The Journal of Systems and Control Engineering refleSystems and control studies provide a unifying framework for a wide range of engineering disciplines and industrial applications. The Journal of Systems and Control Engineering reflects this diversity by giving prominence to experimental application and industrial studies. "It is clear from the feedback we receive that the Journal is now recognised as one of the leaders in its field. We are particularly interested in highlighting experimental applications and industrial studies, but also new theoretical developments which are likely to provide the foundation for future applications. In 2009, we launched a new Series of "Forward Look" papers written by leading researchers and practitioners. These short articles are intended to be provocative and help to set the agenda for future developments. We continue to strive for fast decision times and minimum delays in the production processes." Professor Cliff Burrows - University of Bath, UK This journal is a member of the Committee on Publication Ethics (COPE).cts this diversity by giving prominence to experimental application and industrial studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信