Revealed Invariant Preference

Peter Caradonna, Christopher P. Chambers
{"title":"Revealed Invariant Preference","authors":"Peter Caradonna, Christopher P. Chambers","doi":"arxiv-2408.04573","DOIUrl":null,"url":null,"abstract":"We consider the problem of rationalizing choice data by a preference\nsatisfying an arbitrary collection of invariance axioms. Examples of such\naxioms include quasilinearity, homotheticity, independence-type axioms for\nmixture spaces, constant relative/absolute risk and ambiguity aversion axioms,\nstationarity for dated rewards or consumption streams, separability, and many\nothers. We provide necessary and sufficient conditions for invariant\nrationalizability via a novel approach which relies on tools from the\ntheoretical computer science literature on automated theorem proving. We also\nestablish a generalization of the Dushnik-Miller theorem, which we use to give\na complete description of the out-of-sample predictions generated by the data\nunder any such collection of axioms.","PeriodicalId":501188,"journal":{"name":"arXiv - ECON - Theoretical Economics","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - ECON - Theoretical Economics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the problem of rationalizing choice data by a preference satisfying an arbitrary collection of invariance axioms. Examples of such axioms include quasilinearity, homotheticity, independence-type axioms for mixture spaces, constant relative/absolute risk and ambiguity aversion axioms, stationarity for dated rewards or consumption streams, separability, and many others. We provide necessary and sufficient conditions for invariant rationalizability via a novel approach which relies on tools from the theoretical computer science literature on automated theorem proving. We also establish a generalization of the Dushnik-Miller theorem, which we use to give a complete description of the out-of-sample predictions generated by the data under any such collection of axioms.
显性不变偏好
我们考虑的问题是通过满足任意一组不变性公理的偏好来合理化选择数据。这类公理的例子包括准线性、同调性、混杂空间的独立性类型公理、恒定相对/绝对风险和模糊厌恶公理、过时奖励或消费流的静态性、可分性以及其他许多公理。我们通过一种新颖的方法,利用理论计算机科学文献中关于自动定理证明的工具,为无差别可分性提供了必要条件和充分条件。我们还建立了杜什尼克-米勒(Dushnik-Miller)定理的一般化,并用它来完整描述数据在任何此类公理集合下产生的样本外预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信