Upstream alternative polyadenylation in SCN5A produces a short transcript isoform encoding a mitochondria-localized NaV1.5 N-terminal fragment that influences cardiomyocyte respiration
Nathan H Witmer, Jared M McLendon, Colleen S Stein, Jin-Young Yoon, Elena Berezhnaya, John W Elrod, Barry London, Ryan L Boudreau
{"title":"Upstream alternative polyadenylation in SCN5A produces a short transcript isoform encoding a mitochondria-localized NaV1.5 N-terminal fragment that influences cardiomyocyte respiration","authors":"Nathan H Witmer, Jared M McLendon, Colleen S Stein, Jin-Young Yoon, Elena Berezhnaya, John W Elrod, Barry London, Ryan L Boudreau","doi":"10.1101/2024.08.09.607406","DOIUrl":null,"url":null,"abstract":"SCN5A encodes the cardiac voltage-gated Na+ channel, NaV1.5, that initiates action potentials. SCN5A gene variants cause arrhythmias and increased heart failure risk. Mechanisms controlling NaV1.5 expression and activity are not fully understood. We recently found a well-conserved alternative polyadenylation (APA) signal downstream of the first SCN5A coding exon. This yields a SCN5A-short transcript isoform expressed in several species (e.g. human, pig, and cat), though rodents lack this upstream APA. Reanalysis of transcriptome-wide cardiac APA-seq and mRNA-seq data shows reductions in both upstream APA usage and short/full-length SCN5A mRNA ratios in failing hearts. Knock-in of the human SCN5A APA sequence into mice is sufficient to enable expression of SCN5A-short transcript, while significantly decreasing expression of full-length SCN5A mRNA. Notably, SCN5A-short transcript encodes a novel protein (NaV1.5-NT), composed of an N-terminus identical to NaV1.5 and a unique C-terminus derived from intronic sequence. AAV9 constructs were able to achieve stable NaV1.5-NT expression in mouse hearts, and western blot of human heart tissues showed bands co-migrating with NaV1.5-NT transgene-derived bands. NaV1.5-NT is predicted to contain a mitochondrial targeting sequence and localizes to mitochondria in cultured cardiomyocytes and in mouse hearts. NaV1.5-NT expression in cardiomyocytes led to elevations in basal oxygen consumption rate, ATP production, and mitochondrial ROS, while depleting NADH supply. Native PAGE analyses of mitochondria lysates revealed that NaV1.5-NT expression resulted in increased levels of disassembled complex V subunits and accumulation of complex I-containing supercomplexes. Overall, we discovered that APA-mediated regulation of SCN5A produces a short transcript encoding NaV1.5-NT. Our data support that NaV1.5-NT plays a multifaceted role in influencing mitochondrial physiology: 1) by increasing basal respiration likely through promoting complex V conformations that enhance proton leak, and 2) by increasing overall respiratory efficiency and NADH consumption by enhancing formation and/or stability of complex I-containing respiratory supercomplexes, though the specific molecular mechanisms underlying each of these remain unresolved.","PeriodicalId":501557,"journal":{"name":"bioRxiv - Physiology","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.09.607406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
SCN5A encodes the cardiac voltage-gated Na+ channel, NaV1.5, that initiates action potentials. SCN5A gene variants cause arrhythmias and increased heart failure risk. Mechanisms controlling NaV1.5 expression and activity are not fully understood. We recently found a well-conserved alternative polyadenylation (APA) signal downstream of the first SCN5A coding exon. This yields a SCN5A-short transcript isoform expressed in several species (e.g. human, pig, and cat), though rodents lack this upstream APA. Reanalysis of transcriptome-wide cardiac APA-seq and mRNA-seq data shows reductions in both upstream APA usage and short/full-length SCN5A mRNA ratios in failing hearts. Knock-in of the human SCN5A APA sequence into mice is sufficient to enable expression of SCN5A-short transcript, while significantly decreasing expression of full-length SCN5A mRNA. Notably, SCN5A-short transcript encodes a novel protein (NaV1.5-NT), composed of an N-terminus identical to NaV1.5 and a unique C-terminus derived from intronic sequence. AAV9 constructs were able to achieve stable NaV1.5-NT expression in mouse hearts, and western blot of human heart tissues showed bands co-migrating with NaV1.5-NT transgene-derived bands. NaV1.5-NT is predicted to contain a mitochondrial targeting sequence and localizes to mitochondria in cultured cardiomyocytes and in mouse hearts. NaV1.5-NT expression in cardiomyocytes led to elevations in basal oxygen consumption rate, ATP production, and mitochondrial ROS, while depleting NADH supply. Native PAGE analyses of mitochondria lysates revealed that NaV1.5-NT expression resulted in increased levels of disassembled complex V subunits and accumulation of complex I-containing supercomplexes. Overall, we discovered that APA-mediated regulation of SCN5A produces a short transcript encoding NaV1.5-NT. Our data support that NaV1.5-NT plays a multifaceted role in influencing mitochondrial physiology: 1) by increasing basal respiration likely through promoting complex V conformations that enhance proton leak, and 2) by increasing overall respiratory efficiency and NADH consumption by enhancing formation and/or stability of complex I-containing respiratory supercomplexes, though the specific molecular mechanisms underlying each of these remain unresolved.