microRNA-1 Regulates Metabolic Flexibility in Skeletal Muscle via Pyruvate Metabolism

Ahmed Ismaeel, Bailey D Peck, McLane M Montgomery, Benjamin I Burke, Jensen Goh, Gyumin Kang, Abigail B Franco, Qin Xia, Katarzyna Goljanek-Whysall, Brian McDonagh, Jared M McLendon, Pieter J Koopmans, Daniel Jacko, Kirill Schaaf, Wilhelm Bloch, Sebastian Gehlert, Yuan Wen, Kevin A Murach, Charlotte A Peterson, Ryan L Boudreau, Kelsey H Fisher-Wellman, John J McCarthy
{"title":"microRNA-1 Regulates Metabolic Flexibility in Skeletal Muscle via Pyruvate Metabolism","authors":"Ahmed Ismaeel, Bailey D Peck, McLane M Montgomery, Benjamin I Burke, Jensen Goh, Gyumin Kang, Abigail B Franco, Qin Xia, Katarzyna Goljanek-Whysall, Brian McDonagh, Jared M McLendon, Pieter J Koopmans, Daniel Jacko, Kirill Schaaf, Wilhelm Bloch, Sebastian Gehlert, Yuan Wen, Kevin A Murach, Charlotte A Peterson, Ryan L Boudreau, Kelsey H Fisher-Wellman, John J McCarthy","doi":"10.1101/2024.08.09.607377","DOIUrl":null,"url":null,"abstract":"MicroRNA-1 (miR-1) is the most abundant miRNA in adult skeletal muscle. To determine the function of miR-1 in adult skeletal muscle, we generated an inducible, skeletal muscle-specific miR-1 knockout (KO) mouse. Integration of RNA-sequencing (RNA-seq) data from miR-1 KO muscle with Argonaute 2 enhanced crosslinking and immunoprecipitation sequencing (AGO2 eCLIP-seq) from human skeletal muscle identified miR-1 target genes involved with glycolysis and pyruvate metabolism. The loss of miR-1 in skeletal muscle induced cancer-like metabolic reprogramming, as shown by higher pyruvate kinase muscle isozyme M2 (PKM2) protein levels, which promoted glycolysis. Comprehensive bioenergetic and metabolic phenotyping combined with skeletal muscle proteomics and metabolomics further demonstrated that miR-1 KO induced metabolic inflexibility as a result of pyruvate oxidation resistance. While the genetic loss of miR-1 reduced endurance exercise performance in mice and in C. elegans, the physiological down-regulation of miR-1 expression in response to a hypertrophic stimulus in both humans and mice causes a similar metabolic reprogramming that supports muscle cell growth. Taken together, these data identify a novel post-translational mechanism of adult skeletal muscle metabolism regulation mediated by miR-1.","PeriodicalId":501557,"journal":{"name":"bioRxiv - Physiology","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.09.607377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

MicroRNA-1 (miR-1) is the most abundant miRNA in adult skeletal muscle. To determine the function of miR-1 in adult skeletal muscle, we generated an inducible, skeletal muscle-specific miR-1 knockout (KO) mouse. Integration of RNA-sequencing (RNA-seq) data from miR-1 KO muscle with Argonaute 2 enhanced crosslinking and immunoprecipitation sequencing (AGO2 eCLIP-seq) from human skeletal muscle identified miR-1 target genes involved with glycolysis and pyruvate metabolism. The loss of miR-1 in skeletal muscle induced cancer-like metabolic reprogramming, as shown by higher pyruvate kinase muscle isozyme M2 (PKM2) protein levels, which promoted glycolysis. Comprehensive bioenergetic and metabolic phenotyping combined with skeletal muscle proteomics and metabolomics further demonstrated that miR-1 KO induced metabolic inflexibility as a result of pyruvate oxidation resistance. While the genetic loss of miR-1 reduced endurance exercise performance in mice and in C. elegans, the physiological down-regulation of miR-1 expression in response to a hypertrophic stimulus in both humans and mice causes a similar metabolic reprogramming that supports muscle cell growth. Taken together, these data identify a novel post-translational mechanism of adult skeletal muscle metabolism regulation mediated by miR-1.
microRNA-1 通过丙酮酸代谢调节骨骼肌的代谢灵活性
微RNA-1(miR-1)是成人骨骼肌中含量最丰富的miRNA。为了确定 miR-1 在成人骨骼肌中的功能,我们产生了一种诱导性、骨骼肌特异性 miR-1 基因敲除(KO)小鼠。将来自 miR-1 KO 肌肉的 RNA 测序(RNA-seq)数据与来自人类骨骼肌的 Argonaute 2 增强交联和免疫沉淀测序(AGO2 eCLIP-seq)数据整合,发现了与糖酵解和丙酮酸代谢有关的 miR-1 靶基因。骨骼肌中 miR-1 的缺失诱导了类似癌症的代谢重编程,表现为丙酮酸激酶肌肉同工酶 M2(PKM2)蛋白水平升高,促进了糖酵解。结合骨骼肌蛋白质组学和代谢组学的综合生物能和代谢表型分析进一步证明,miR-1 KO诱导的丙酮酸氧化抵抗导致代谢不灵活。虽然 miR-1 的基因缺失会降低小鼠和优雅小鼠的耐力运动表现,但在人和小鼠体内,miR-1 在肥大刺激下的生理性表达下调会导致类似的代谢重编程,从而支持肌肉细胞的生长。综上所述,这些数据发现了一种由 miR-1 介导的成年骨骼肌代谢调节的新的翻译后机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信