Zeyi Wang, Eric Bridgeford, Shangsi Wang, Joshua T. Vogelstein, Brian Caffo
{"title":"Statistical Analysis of Data Repeatability Measures","authors":"Zeyi Wang, Eric Bridgeford, Shangsi Wang, Joshua T. Vogelstein, Brian Caffo","doi":"10.1111/insr.12591","DOIUrl":null,"url":null,"abstract":"SummaryThe advent of modern data collection and processing techniques has seen the size, scale and complexity of data grow exponentially. A seminal step in leveraging these rich datasets for downstream inference is understanding the characteristics of the data which are repeatable—the aspects of the data that are able to be identified under duplicated analyses. Conflictingly, the utility of traditional repeatability measures, such as the intra‐class correlation coefficient, under these settings is limited. In recent work, novel data repeatability measures have been introduced in the context where a set of subjects are measured twice or more, including: fingerprinting, rank sums and generalisations of the intra‐class correlation coefficient. However, the relationships between, and the best practices among, these measures remains largely unknown. In this manuscript, we formalise a novel repeatability measure, discriminability. We show that it is deterministically linked with the intra‐class correlation coefficients under univariate random effect models and has the desired property of optimal accuracy for inferential tasks using multivariate measurements. Additionally, we overview and systematically compare existing repeatability statistics with discriminability, using both theoretical results and simulations. We show that the rank sum statistic is deterministically linked to a consistent estimator of discriminability. The statistical power of permutation tests derived from these measures are compared numerically under Gaussian and non‐Gaussian settings, with and without simulated batch effects. Motivated by both theoretical and empirical results, we provide methodological recommendations for each benchmark setting to serve as a resource for future analyses. We believe these recommendations will play an important role towards improving repeatability in fields such as functional magnetic resonance imaging, genomics, pharmacology and more.","PeriodicalId":14479,"journal":{"name":"International Statistical Review","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Statistical Review","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/insr.12591","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
SummaryThe advent of modern data collection and processing techniques has seen the size, scale and complexity of data grow exponentially. A seminal step in leveraging these rich datasets for downstream inference is understanding the characteristics of the data which are repeatable—the aspects of the data that are able to be identified under duplicated analyses. Conflictingly, the utility of traditional repeatability measures, such as the intra‐class correlation coefficient, under these settings is limited. In recent work, novel data repeatability measures have been introduced in the context where a set of subjects are measured twice or more, including: fingerprinting, rank sums and generalisations of the intra‐class correlation coefficient. However, the relationships between, and the best practices among, these measures remains largely unknown. In this manuscript, we formalise a novel repeatability measure, discriminability. We show that it is deterministically linked with the intra‐class correlation coefficients under univariate random effect models and has the desired property of optimal accuracy for inferential tasks using multivariate measurements. Additionally, we overview and systematically compare existing repeatability statistics with discriminability, using both theoretical results and simulations. We show that the rank sum statistic is deterministically linked to a consistent estimator of discriminability. The statistical power of permutation tests derived from these measures are compared numerically under Gaussian and non‐Gaussian settings, with and without simulated batch effects. Motivated by both theoretical and empirical results, we provide methodological recommendations for each benchmark setting to serve as a resource for future analyses. We believe these recommendations will play an important role towards improving repeatability in fields such as functional magnetic resonance imaging, genomics, pharmacology and more.
期刊介绍:
International Statistical Review is the flagship journal of the International Statistical Institute (ISI) and of its family of Associations. It publishes papers of broad and general interest in statistics and probability. The term Review is to be interpreted broadly. The types of papers that are suitable for publication include (but are not limited to) the following: reviews/surveys of significant developments in theory, methodology, statistical computing and graphics, statistical education, and application areas; tutorials on important topics; expository papers on emerging areas of research or application; papers describing new developments and/or challenges in relevant areas; papers addressing foundational issues; papers on the history of statistics and probability; white papers on topics of importance to the profession or society; and historical assessment of seminal papers in the field and their impact.