{"title":"Mesoscale formation and energy release characteristics of PTFE/Al reactive jet","authors":"Yuanfeng Zheng, Hongyu Zhang, Peiliang Li, Zhijian Zheng, Huanguo Guo","doi":"10.1002/prep.202300310","DOIUrl":null,"url":null,"abstract":"In order to investigate the mechanical formation, the mechanical‐thermo coupling mesoscale mechanism and the corresponding energy release characteristics of PTFE/Al composite material reactive jet, a mesoscale discretization model of PTFE/Al reactive liner with a mass ratio of 73.5 %/26.5 % is developed on the basis of the random delivery principle. The mesoscale numerical simulation is used to perform PTFE/Al reactive jet formation, obtaining the relative distribution characteristics of material, pressure, and temperature. The overpressure experiments for the energy release of reactive jets are conducted. The results show that there is an increasing tendency in the amount of Al particles from the jet's tip to its tail due to the velocity variance between PTFE and Al. The high temperature zones are found to be concentrated on the tip and axis of the jet, with particle deformation, collision and friction in the reactive jet accounting for the temperature rise. Moreover, the Al particle size has a significantly influence on the particle distribution and the mechanical‐thermo coupling behavior in the reactive jet, and the decrease of particle size is beneficial to the chemical reaction among the components of the reactive jet. To be more specifically, under the conditions of Al particle size of 400 μm, 600 μm and 800 μm, the overpressure peaks of reactive jet in 13 L chamber are 3.32 MPa, 2.86 MPa and 2.61 MPa, respectively. The variation of the overpressure with Al particle size obtained by experiment is consistent with the analysis of the mechanical‐thermo coupling characteristics of mesoscale numerical simulation.","PeriodicalId":20800,"journal":{"name":"Propellants, Explosives, Pyrotechnics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Propellants, Explosives, Pyrotechnics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/prep.202300310","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In order to investigate the mechanical formation, the mechanical‐thermo coupling mesoscale mechanism and the corresponding energy release characteristics of PTFE/Al composite material reactive jet, a mesoscale discretization model of PTFE/Al reactive liner with a mass ratio of 73.5 %/26.5 % is developed on the basis of the random delivery principle. The mesoscale numerical simulation is used to perform PTFE/Al reactive jet formation, obtaining the relative distribution characteristics of material, pressure, and temperature. The overpressure experiments for the energy release of reactive jets are conducted. The results show that there is an increasing tendency in the amount of Al particles from the jet's tip to its tail due to the velocity variance between PTFE and Al. The high temperature zones are found to be concentrated on the tip and axis of the jet, with particle deformation, collision and friction in the reactive jet accounting for the temperature rise. Moreover, the Al particle size has a significantly influence on the particle distribution and the mechanical‐thermo coupling behavior in the reactive jet, and the decrease of particle size is beneficial to the chemical reaction among the components of the reactive jet. To be more specifically, under the conditions of Al particle size of 400 μm, 600 μm and 800 μm, the overpressure peaks of reactive jet in 13 L chamber are 3.32 MPa, 2.86 MPa and 2.61 MPa, respectively. The variation of the overpressure with Al particle size obtained by experiment is consistent with the analysis of the mechanical‐thermo coupling characteristics of mesoscale numerical simulation.
期刊介绍:
Propellants, Explosives, Pyrotechnics (PEP) is an international, peer-reviewed journal containing Full Papers, Short Communications, critical Reviews, as well as details of forthcoming meetings and book reviews concerned with the research, development and production in relation to propellants, explosives, and pyrotechnics for all applications. Being the official journal of the International Pyrotechnics Society, PEP is a vital medium and the state-of-the-art forum for the exchange of science and technology in energetic materials. PEP is published 12 times a year.
PEP is devoted to advancing the science, technology and engineering elements in the storage and manipulation of chemical energy, specifically in propellants, explosives and pyrotechnics. Articles should provide scientific context, articulate impact, and be generally applicable to the energetic materials and wider scientific community. PEP is not a defense journal and does not feature the weaponization of materials and related systems or include information that would aid in the development or utilization of improvised explosive systems, e.g., synthesis routes to terrorist explosives.