Amin Abdollahzadeh, Behrouz Bagheri Vanani, Abbas Masoudi Morghmaleki, Ahmad Ostovari Moghaddam, Ali Reza Eivani
{"title":"Advancements in joining Al-Zn-TiC-Mg composites using friction stir welding process: Influence of traverse speed","authors":"Amin Abdollahzadeh, Behrouz Bagheri Vanani, Abbas Masoudi Morghmaleki, Ahmad Ostovari Moghaddam, Ali Reza Eivani","doi":"10.1177/00219983241274502","DOIUrl":null,"url":null,"abstract":"In this article, dissimilar magnesium and aluminum alloys were welded with a Zn interlayer and TiC nanoparticles by friction stir welding. Optimal joining conditions were achieved by a combination of three traverse speeds (30, 45, and 60 mm/min) and constant rotational speeds (1050 rpm). The best microstructure evolution and mechanical properties were achieved for specimens joined at rotational and traverse speeds of 1050 rpm and 45 mm/min, respectively. The grain size decreases as the traverse speed increases from 30 to 45 mm/min due to a reduction in heat input, an improvement in reinforcing distribution, and high intermixing of materials, then increases from 45 to 60 mm/min due to inadequate heat input for recrystallization process. It was shown that the TiC particles play a prominent role in the microstructure modification and enhance mechanical properties of weld samples while the Zn foil interlayer plays a vital in avoiding the formation of Al-Mg IMC phases. The obtained result under optimal welding parameters indicates that MgZn<jats:sub>2</jats:sub>, Mg-Al-Zn compounds, Mg and Al solid solution, were the main detected common phases in the stir zone instead of the brittle and hard Al-Mg IMCs formation. The average hardness values of 232 Hv were achieved, while the strength of the weld specimen experiences the 189 MPa value. In addition, a combination of brittle and ductile modes was observed based on the fracture surface of the weld sample after the tensile test.","PeriodicalId":15489,"journal":{"name":"Journal of Composite Materials","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/00219983241274502","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, dissimilar magnesium and aluminum alloys were welded with a Zn interlayer and TiC nanoparticles by friction stir welding. Optimal joining conditions were achieved by a combination of three traverse speeds (30, 45, and 60 mm/min) and constant rotational speeds (1050 rpm). The best microstructure evolution and mechanical properties were achieved for specimens joined at rotational and traverse speeds of 1050 rpm and 45 mm/min, respectively. The grain size decreases as the traverse speed increases from 30 to 45 mm/min due to a reduction in heat input, an improvement in reinforcing distribution, and high intermixing of materials, then increases from 45 to 60 mm/min due to inadequate heat input for recrystallization process. It was shown that the TiC particles play a prominent role in the microstructure modification and enhance mechanical properties of weld samples while the Zn foil interlayer plays a vital in avoiding the formation of Al-Mg IMC phases. The obtained result under optimal welding parameters indicates that MgZn2, Mg-Al-Zn compounds, Mg and Al solid solution, were the main detected common phases in the stir zone instead of the brittle and hard Al-Mg IMCs formation. The average hardness values of 232 Hv were achieved, while the strength of the weld specimen experiences the 189 MPa value. In addition, a combination of brittle and ductile modes was observed based on the fracture surface of the weld sample after the tensile test.
期刊介绍:
Consistently ranked in the top 10 of the Thomson Scientific JCR, the Journal of Composite Materials publishes peer reviewed, original research papers from internationally renowned composite materials specialists from industry, universities and research organizations, featuring new advances in materials, processing, design, analysis, testing, performance and applications. This journal is a member of the Committee on Publication Ethics (COPE).