Nonsmooth convex–concave saddle point problems with cardinality penalties

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Wei Bian, Xiaojun Chen
{"title":"Nonsmooth convex–concave saddle point problems with cardinality penalties","authors":"Wei Bian, Xiaojun Chen","doi":"10.1007/s10107-024-02123-x","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we focus on a class of convexly constrained nonsmooth convex–concave saddle point problems with cardinality penalties. Although such nonsmooth nonconvex–nonconcave and discontinuous min–max problems may not have a saddle point, we show that they have a local saddle point and a global minimax point, and some local saddle points have the lower bound properties. We define a class of strong local saddle points based on the lower bound properties for stability of variable selection. Moreover, we give a framework to construct continuous relaxations of the discontinuous min–max problems based on convolution, such that they have the same saddle points with the original problem. We also establish the relations between the continuous relaxation problems and the original problems regarding local saddle points, global minimax points, local minimax points and stationary points. Finally, we illustrate our results with distributionally robust sparse convex regression, sparse robust bond portfolio construction and sparse convex–concave logistic regression saddle point problems.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10107-024-02123-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we focus on a class of convexly constrained nonsmooth convex–concave saddle point problems with cardinality penalties. Although such nonsmooth nonconvex–nonconcave and discontinuous min–max problems may not have a saddle point, we show that they have a local saddle point and a global minimax point, and some local saddle points have the lower bound properties. We define a class of strong local saddle points based on the lower bound properties for stability of variable selection. Moreover, we give a framework to construct continuous relaxations of the discontinuous min–max problems based on convolution, such that they have the same saddle points with the original problem. We also establish the relations between the continuous relaxation problems and the original problems regarding local saddle points, global minimax points, local minimax points and stationary points. Finally, we illustrate our results with distributionally robust sparse convex regression, sparse robust bond portfolio construction and sparse convex–concave logistic regression saddle point problems.

Abstract Image

有数量惩罚的非光滑凸凹鞍点问题
在本文中,我们重点研究了一类带有万有引力惩罚的凸约束非光滑凸凹鞍点问题。虽然这类非光滑非凸非凹且不连续的最小极大问题可能不存在鞍点,但我们证明了它们存在局部鞍点和全局最小极大点,而且一些局部鞍点具有下界特性。我们根据变量选择稳定性的下界特性定义了一类强局部鞍点。此外,我们还给出了一个基于卷积的非连续最小最大问题的连续松弛框架,使它们与原始问题具有相同的鞍点。我们还建立了连续松弛问题与原始问题在局部鞍点、全局最小点、局部最小点和静止点方面的关系。最后,我们用分布稳健稀疏凸回归、稀疏稳健债券组合构建和稀疏凸凹逻辑回归鞍点问题来说明我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信