Cross-Domain Learning Framework for Tracking Users in RIS-Aided Multi-Band ISAC Systems With Sparse Labeled Data

Jingzhi Hu;Dusit Niyato;Jun Luo
{"title":"Cross-Domain Learning Framework for Tracking Users in RIS-Aided Multi-Band ISAC Systems With Sparse Labeled Data","authors":"Jingzhi Hu;Dusit Niyato;Jun Luo","doi":"10.1109/JSAC.2024.3414600","DOIUrl":null,"url":null,"abstract":"Integrated sensing and communications (ISAC) is pivotal for 6G communications and is boosted by the rapid development of reconfigurable intelligent surfaces (RISs). Using the channel state information (CSI) across multiple frequency bands, RIS-aided multi-band ISAC systems can potentially track users’ positions with high precision. Though tracking with CSI is desirable as no communication overheads are incurred, it faces challenges due to the multi-modalities of CSI samples, irregular and asynchronous data traffic, and sparse labeled data for learning the tracking function. This paper proposes the X2Track framework, where we model the tracking function by a hierarchical architecture, jointly utilizing multi-modal CSI indicators across multiple bands, and optimize it in a cross-domain manner, tackling the sparsity of labeled data for the target deployment environment (namely, target domain) by adapting the knowledge learned from another environment (namely, source domain). Under X2Track, we design an efficient deep learning algorithm to minimize tracking errors, based on transformer neural networks and adversarial learning techniques. Simulation results verify that X2Track achieves decimeter-level axial tracking errors even under scarce UL data traffic and strong interference conditions and can adapt to diverse deployment environments with fewer than 5% training data, or equivalently, 5 minutes of UE tracks, being labeled.","PeriodicalId":73294,"journal":{"name":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","volume":"42 10","pages":"2754-2768"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10565756","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10565756/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Integrated sensing and communications (ISAC) is pivotal for 6G communications and is boosted by the rapid development of reconfigurable intelligent surfaces (RISs). Using the channel state information (CSI) across multiple frequency bands, RIS-aided multi-band ISAC systems can potentially track users’ positions with high precision. Though tracking with CSI is desirable as no communication overheads are incurred, it faces challenges due to the multi-modalities of CSI samples, irregular and asynchronous data traffic, and sparse labeled data for learning the tracking function. This paper proposes the X2Track framework, where we model the tracking function by a hierarchical architecture, jointly utilizing multi-modal CSI indicators across multiple bands, and optimize it in a cross-domain manner, tackling the sparsity of labeled data for the target deployment environment (namely, target domain) by adapting the knowledge learned from another environment (namely, source domain). Under X2Track, we design an efficient deep learning algorithm to minimize tracking errors, based on transformer neural networks and adversarial learning techniques. Simulation results verify that X2Track achieves decimeter-level axial tracking errors even under scarce UL data traffic and strong interference conditions and can adapt to diverse deployment environments with fewer than 5% training data, or equivalently, 5 minutes of UE tracks, being labeled.
利用稀疏标签数据在 RIS 辅助多波段 ISAC 系统中跟踪用户的跨域学习框架
综合传感与通信(ISAC)对 6G 通信至关重要,可重构智能表面(RIS)的快速发展推动了这一进程。利用跨多个频段的信道状态信息(CSI),RIS 辅助的多频段 ISAC 系统有可能高精度地跟踪用户位置。虽然利用 CSI 进行跟踪不会产生通信开销,因此是一种理想的方法,但由于 CSI 样本的多种模式、不规则和异步数据流量以及用于学习跟踪函数的稀疏标记数据,这种方法面临着挑战。本文提出了 X2Track 框架,通过分层架构对跟踪函数进行建模,联合利用多个频段的多模态 CSI 指标,并以跨域的方式对其进行优化,通过调整从另一环境(即源域)学到的知识来解决目标部署环境(即目标域)标记数据稀少的问题。在 X2Track 下,我们设计了一种基于变压器神经网络和对抗学习技术的高效深度学习算法,以最大限度地减少跟踪误差。仿真结果验证了X2Track即使在UL数据流量稀少和强干扰条件下也能实现分米级的轴向跟踪误差,并能适应各种部署环境,只需标注不到5%的训练数据,或相当于5分钟的UE轨迹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信