Light–Matter Entanglement in a Microcavity with a Quantum Well and Injected with Squeezed Light

IF 0.7 4区 物理与天体物理 Q4 OPTICS
Desalegn Ayehu, Lmenew Alemu
{"title":"Light–Matter Entanglement in a Microcavity with a Quantum Well and Injected with Squeezed Light","authors":"Desalegn Ayehu,&nbsp;Lmenew Alemu","doi":"10.1007/s10946-024-10211-8","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate the quantification of entanglement between the photonic and excitonic modes in a semiconductor microcavity injected with squeezed light. By deriving and subsequently establishing the solutions to the quantum Langevin equations, we quantify the transient entanglement and the steady-state entanglement between the photonic and excitonic modes in the low-excitation regime. It turns out that the cavity mode and the exciton mode are entangled in both the weak and strong coupling regimes, and there is the entanglement between the cavity mode and the exciton mode even in the absence of direct coupling between them. Furthermore, though the transit entanglement increases with the squeeze parameter, it decreases with the initial average intensity of the cavity mode. Also, we demonstrate that, in the strong coupling regime, the steady-state entanglement grows with coupling strength while, in the weak coupling regime, it decreases.</p></div>","PeriodicalId":663,"journal":{"name":"Journal of Russian Laser Research","volume":"45 3","pages":"268 - 277"},"PeriodicalIF":0.7000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Russian Laser Research","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10946-024-10211-8","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the quantification of entanglement between the photonic and excitonic modes in a semiconductor microcavity injected with squeezed light. By deriving and subsequently establishing the solutions to the quantum Langevin equations, we quantify the transient entanglement and the steady-state entanglement between the photonic and excitonic modes in the low-excitation regime. It turns out that the cavity mode and the exciton mode are entangled in both the weak and strong coupling regimes, and there is the entanglement between the cavity mode and the exciton mode even in the absence of direct coupling between them. Furthermore, though the transit entanglement increases with the squeeze parameter, it decreases with the initial average intensity of the cavity mode. Also, we demonstrate that, in the strong coupling regime, the steady-state entanglement grows with coupling strength while, in the weak coupling regime, it decreases.

带有量子阱并注入挤压光的微腔中的光物质纠缠
我们研究了用挤压光注入半导体微腔中光子和激子模式之间纠缠的量化问题。通过推导和建立量子朗格文方程的解,我们量化了低激发机制下光子和激子模式之间的瞬态纠缠和稳态纠缠。结果表明,空穴模式和激子模式在弱耦合和强耦合两种情况下都存在纠缠,即使在空穴模式和激子模式之间没有直接耦合的情况下,它们之间也存在纠缠。此外,虽然转运纠缠随挤压参数的增加而增加,但却随空穴模式的初始平均强度而减小。我们还证明,在强耦合机制下,稳态纠缠随耦合强度的增加而增加,而在弱耦合机制下,稳态纠缠则随耦合强度的减小而减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
22.20%
发文量
73
审稿时长
2 months
期刊介绍: The journal publishes original, high-quality articles that follow new developments in all areas of laser research, including: laser physics; laser interaction with matter; properties of laser beams; laser thermonuclear fusion; laser chemistry; quantum and nonlinear optics; optoelectronics; solid state, gas, liquid, chemical, and semiconductor lasers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信