{"title":"Real-Time Monitoring of Laser-Layered Paint Removal from CFRP Based on the Synergy of Laser-Induced Breakdown Spectroscopy and PLS-DA Models","authors":"Ying Zhao, Xiaoyong Zhuo, Yanqun Tong, Jianyu Huang, Shuai Wang, Wangfan Zhou, Liang Chen, Yu Chen, Wen Shi","doi":"10.1007/s10946-024-10221-6","DOIUrl":null,"url":null,"abstract":"<div><p>To achieve precise removal of different coatings from carbon fiber-reinforced polymer (CFRP), we propose real-time monitoring for laser-layered paint removal. Current methods for laser paint removal on CFRP surfaces primarily focus on temperature control to safeguard the CFRP against potential damage, yet encounter challenges in providing real-time monitoring capabilities. In this study, we present laser-induced breakdown spectroscopy (LIBS) combined with partial least-squares discriminant analysis (PLS-DA) models as a promising approach. Initially, in this study, we analyze the elemental composition of carbon fiber substrates, primer, and topcoat to identify key characteristic elements for evaluating the laser-layered paint removal effectiveness. Subsequently, we explore changes in the intensities of characteristic spectral lines associated with the characteristic elements in different layers. Lastly, we develop PLS-DA models to effectively identify and classify the carbon fiber substrates, primer, and topcoat, enabling real-time monitoring of laser-layered paint removal. Based on the measured LIBS characteristic intensities and PLS-DA models, we accurately identified materials using Al I (396.164 nm) and Cr I (428.984 nm), or exclusively Cr I (428.984 nm), with 100% accuracy. The results demonstrate the feasibility of integrating LIBS with PLS-DA for monitoring laser-layered paint removal and show its potential in high-quality surface cleaning and automation.</p></div>","PeriodicalId":663,"journal":{"name":"Journal of Russian Laser Research","volume":"45 3","pages":"354 - 364"},"PeriodicalIF":0.7000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Russian Laser Research","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10946-024-10221-6","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
To achieve precise removal of different coatings from carbon fiber-reinforced polymer (CFRP), we propose real-time monitoring for laser-layered paint removal. Current methods for laser paint removal on CFRP surfaces primarily focus on temperature control to safeguard the CFRP against potential damage, yet encounter challenges in providing real-time monitoring capabilities. In this study, we present laser-induced breakdown spectroscopy (LIBS) combined with partial least-squares discriminant analysis (PLS-DA) models as a promising approach. Initially, in this study, we analyze the elemental composition of carbon fiber substrates, primer, and topcoat to identify key characteristic elements for evaluating the laser-layered paint removal effectiveness. Subsequently, we explore changes in the intensities of characteristic spectral lines associated with the characteristic elements in different layers. Lastly, we develop PLS-DA models to effectively identify and classify the carbon fiber substrates, primer, and topcoat, enabling real-time monitoring of laser-layered paint removal. Based on the measured LIBS characteristic intensities and PLS-DA models, we accurately identified materials using Al I (396.164 nm) and Cr I (428.984 nm), or exclusively Cr I (428.984 nm), with 100% accuracy. The results demonstrate the feasibility of integrating LIBS with PLS-DA for monitoring laser-layered paint removal and show its potential in high-quality surface cleaning and automation.
期刊介绍:
The journal publishes original, high-quality articles that follow new developments in all areas of laser research, including:
laser physics;
laser interaction with matter;
properties of laser beams;
laser thermonuclear fusion;
laser chemistry;
quantum and nonlinear optics;
optoelectronics;
solid state, gas, liquid, chemical, and semiconductor lasers.