A Stochastic Particle Variational Bayesian Inference Inspired Deep-Unfolding Network for Sensing Over Wireless Networks

Zhixiang Hu;An Liu;Wenkang Xu;Tony Q. S. Quek;Minjian Zhao
{"title":"A Stochastic Particle Variational Bayesian Inference Inspired Deep-Unfolding Network for Sensing Over Wireless Networks","authors":"Zhixiang Hu;An Liu;Wenkang Xu;Tony Q. S. Quek;Minjian Zhao","doi":"10.1109/JSAC.2024.3414626","DOIUrl":null,"url":null,"abstract":"Future wireless networks are envisioned to provide ubiquitous sensing services, driving a substantial demand for multi-dimensional non-convex parameter estimation. This entails dealing with non-convex likelihood functions containing numerous local optima. Variational Bayesian inference (VBI) provides a powerful tool for modeling complex estimation problems and leveraging prior information, but poses a long-standing challenge on computing intractable posterior distributions. Most existing variational methods depend on specific distribution assumptions for obtaining closed-form solutions, and are difficult to apply in practical scenarios. Given these challenges, firstly, we propose a parallel stochastic particle VBI (PSPVBI) algorithm. Due to innovations like particle approximation, added updates of particle positions, and parallel stochastic successive convex approximation (PSSCA), PSPVBI can flexibly drive particles to fit the posterior distribution with acceptable complexity, yielding high-precision estimates of the target parameters. Furthermore, additional speedup can be obtained by deep-unfolding this algorithm. Specifically, superior hyperparameters are learned to dramatically reduce iterations. In this PSPVBI-induced deep-unfolding network, some techniques related to gradient computation, data sub-sampling, differentiable sampling, and generalization ability are also employed to facilitate the practical deployment. Finally, we apply the learnable PSPVBI (LPSPVBI) to solve two important positioning/sensing problems over wireless networks. Simulations indicate that the LPSPVBI algorithm outperforms existing solutions.","PeriodicalId":73294,"journal":{"name":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","volume":"42 10","pages":"2832-2846"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10557666/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Future wireless networks are envisioned to provide ubiquitous sensing services, driving a substantial demand for multi-dimensional non-convex parameter estimation. This entails dealing with non-convex likelihood functions containing numerous local optima. Variational Bayesian inference (VBI) provides a powerful tool for modeling complex estimation problems and leveraging prior information, but poses a long-standing challenge on computing intractable posterior distributions. Most existing variational methods depend on specific distribution assumptions for obtaining closed-form solutions, and are difficult to apply in practical scenarios. Given these challenges, firstly, we propose a parallel stochastic particle VBI (PSPVBI) algorithm. Due to innovations like particle approximation, added updates of particle positions, and parallel stochastic successive convex approximation (PSSCA), PSPVBI can flexibly drive particles to fit the posterior distribution with acceptable complexity, yielding high-precision estimates of the target parameters. Furthermore, additional speedup can be obtained by deep-unfolding this algorithm. Specifically, superior hyperparameters are learned to dramatically reduce iterations. In this PSPVBI-induced deep-unfolding network, some techniques related to gradient computation, data sub-sampling, differentiable sampling, and generalization ability are also employed to facilitate the practical deployment. Finally, we apply the learnable PSPVBI (LPSPVBI) to solve two important positioning/sensing problems over wireless networks. Simulations indicate that the LPSPVBI algorithm outperforms existing solutions.
用于无线网络传感的随机粒子变异贝叶斯推理启发式深度展开网络
未来的无线网络将提供无所不在的传感服务,这就对多维非凸参数估计提出了更高的要求。这就需要处理包含大量局部最优的非凸似然函数。变分贝叶斯推理(VBI)为复杂的估计问题建模和利用先验信息提供了强大的工具,但在计算难以处理的后验分布方面却提出了长期的挑战。现有的大多数变分方法依赖于特定的分布假设来获得闭式解,很难应用于实际场景。鉴于这些挑战,我们首先提出了一种并行随机粒子 VBI(PSPVBI)算法。由于采用了粒子近似、增加粒子位置更新和并行随机连续凸近似(PSSCA)等创新技术,PSPVBI 可以灵活地驱动粒子以可接受的复杂度拟合后验分布,从而获得高精度的目标参数估计。此外,通过深度折叠该算法还能获得额外的速度提升。具体来说,通过学习优秀的超参数,可以大大减少迭代次数。在这个由 PSPVBI 引发的深度折叠网络中,还采用了一些与梯度计算、数据子采样、可微分采样和泛化能力相关的技术,以方便实际部署。最后,我们将可学习的 PSPVBI(LPSPVBI)应用于解决两个重要的无线网络定位/传感问题。模拟结果表明,LPSPVBI 算法优于现有的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信