Extracting Topological Orders of Generalized Pauli Stabilizer Codes in Two Dimensions

Zijian Liang (梁子健), Yijia Xu (许逸葭), Joseph T. Iosue, Yu-An Chen (陳昱安)
{"title":"Extracting Topological Orders of Generalized Pauli Stabilizer Codes in Two Dimensions","authors":"Zijian Liang (梁子健), Yijia Xu (许逸葭), Joseph T. Iosue, Yu-An Chen (陳昱安)","doi":"10.1103/prxquantum.5.030328","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce an algorithm for extracting topological data from translation invariant generalized Pauli stabilizer codes in two-dimensional systems, focusing on the analysis of anyon excitations and string operators. The algorithm applies to <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi mathvariant=\"double-struck\">Z</mi></mrow><mi>d</mi></msub></math> qudits, including instances where <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>d</mi></math> is a nonprime number. This capability allows the identification of topological orders that differ from the <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi mathvariant=\"double-struck\">Z</mi></mrow><mi>d</mi></msub></math> toric codes. It extends our understanding beyond the established theorem that Pauli stabilizer codes for <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi mathvariant=\"double-struck\">Z</mi></mrow><mi>p</mi></msub></math> qudits (with <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi></math> being a prime) are equivalent to finite copies of <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi mathvariant=\"double-struck\">Z</mi></mrow><mi>p</mi></msub></math> toric codes and trivial stabilizers. The algorithm is designed to determine all anyons and their string operators, enabling the computation of their fusion rules, topological spins, and braiding statistics. The method converts the identification of topological orders into computational tasks, including Gaussian elimination, the Hermite normal form, and the Smith normal form of truncated Laurent polynomials. Furthermore, the algorithm provides a systematic approach for studying quantum error-correcting codes. We apply it to various codes, such as self-dual CSS quantum codes modified from the two-dimensional honeycomb color code and non-CSS quantum codes that contain the double semion topological order or the six-semion topological order.","PeriodicalId":501296,"journal":{"name":"PRX Quantum","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PRX Quantum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/prxquantum.5.030328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we introduce an algorithm for extracting topological data from translation invariant generalized Pauli stabilizer codes in two-dimensional systems, focusing on the analysis of anyon excitations and string operators. The algorithm applies to Zd qudits, including instances where d is a nonprime number. This capability allows the identification of topological orders that differ from the Zd toric codes. It extends our understanding beyond the established theorem that Pauli stabilizer codes for Zp qudits (with p being a prime) are equivalent to finite copies of Zp toric codes and trivial stabilizers. The algorithm is designed to determine all anyons and their string operators, enabling the computation of their fusion rules, topological spins, and braiding statistics. The method converts the identification of topological orders into computational tasks, including Gaussian elimination, the Hermite normal form, and the Smith normal form of truncated Laurent polynomials. Furthermore, the algorithm provides a systematic approach for studying quantum error-correcting codes. We apply it to various codes, such as self-dual CSS quantum codes modified from the two-dimensional honeycomb color code and non-CSS quantum codes that contain the double semion topological order or the six-semion topological order.

Abstract Image

提取二维广义保利稳定器代码的拓扑阶数
在本文中,我们介绍了一种从二维系统中平移不变广义保利稳定器代码中提取拓扑数据的算法,重点分析了anyon激元和弦算子。该算法适用于 Zd 量子,包括 d 为非质数的情况。这种能力允许识别不同于 Zd toric 代码的拓扑阶数。它扩展了我们对既定定理的理解,即 Zp qudits(p 为质数)的保利稳定器编码等同于 Zp Toric 编码和三维稳定器的有限副本。该算法旨在确定所有任子及其弦算子,从而能够计算它们的融合规则、拓扑自旋和编织统计。该方法将拓扑阶的识别转化为计算任务,包括高斯消元、赫米特正则表达式和截断劳伦多项式的史密斯正则表达式。此外,该算法还为研究量子纠错码提供了一种系统方法。我们将该算法应用于各种代码,如从二维蜂巢色码改进而来的自双 CSS 量子码,以及包含双半子拓扑阶或六半子拓扑阶的非 CSS 量子码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信