{"title":"One-Dimensional Rock and Soil Characteristic Parameters Prediction Method Based on SRR","authors":"Zeliang Wang, Rui Gao, Xiuren Hu","doi":"10.1007/s13369-024-09393-9","DOIUrl":null,"url":null,"abstract":"<p>Acquiring precise geologic parameters for obstructed or complex geologic regions poses a difficult task in practical engineering. Current predictions depend on the expertise of engineers, leading to inadequate levels of precision. Therefore, in this study, geotechnical stratigraphic data were transformed into visualization images containing only red information corresponding to <i>R</i> values in RGB images. The generated visualization images were analyzed using a super-resolution convolutional neural network (SRCNN) for prediction and compared with linear interpolation-based prediction methods. Subsequently, a dataset containing 430,000 patches was generated using real geologic data from a specific project, and this dataset was used for SRCNN training to validate its prediction. The results showed that SRCNN yields a peak signal-to-noise ratio (PSNR) of 40.22 dB, exceeding the linear interpolation on the geologic map (39.93 dB). The SRCNN training was successful and outperformed the linear interpolation. The PSNR values of the SRCNN were higher (34.69 dB, 37.68 dB, 38.79 dB, 37.56 dB, and 44.99 dB) compared to linear interpolation (34.53 dB, 37.43 dB, 38.38 dB, 37.29 dB, and 44.31 dB). These findings confirmed the significant potential of the application of super-resolution reconstruction for predicting soil distribution, and this method is expected to yield more precise soil prediction results as the dataset grows.</p>","PeriodicalId":8109,"journal":{"name":"Arabian Journal for Science and Engineering","volume":"26 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arabian Journal for Science and Engineering","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1007/s13369-024-09393-9","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0
Abstract
Acquiring precise geologic parameters for obstructed or complex geologic regions poses a difficult task in practical engineering. Current predictions depend on the expertise of engineers, leading to inadequate levels of precision. Therefore, in this study, geotechnical stratigraphic data were transformed into visualization images containing only red information corresponding to R values in RGB images. The generated visualization images were analyzed using a super-resolution convolutional neural network (SRCNN) for prediction and compared with linear interpolation-based prediction methods. Subsequently, a dataset containing 430,000 patches was generated using real geologic data from a specific project, and this dataset was used for SRCNN training to validate its prediction. The results showed that SRCNN yields a peak signal-to-noise ratio (PSNR) of 40.22 dB, exceeding the linear interpolation on the geologic map (39.93 dB). The SRCNN training was successful and outperformed the linear interpolation. The PSNR values of the SRCNN were higher (34.69 dB, 37.68 dB, 38.79 dB, 37.56 dB, and 44.99 dB) compared to linear interpolation (34.53 dB, 37.43 dB, 38.38 dB, 37.29 dB, and 44.31 dB). These findings confirmed the significant potential of the application of super-resolution reconstruction for predicting soil distribution, and this method is expected to yield more precise soil prediction results as the dataset grows.
期刊介绍:
King Fahd University of Petroleum & Minerals (KFUPM) partnered with Springer to publish the Arabian Journal for Science and Engineering (AJSE).
AJSE, which has been published by KFUPM since 1975, is a recognized national, regional and international journal that provides a great opportunity for the dissemination of research advances from the Kingdom of Saudi Arabia, MENA and the world.