An Object is Worth 64x64 Pixels: Generating 3D Object via Image Diffusion

Xingguang Yan, Han-Hung Lee, Ziyu Wan, Angel X. Chang
{"title":"An Object is Worth 64x64 Pixels: Generating 3D Object via Image Diffusion","authors":"Xingguang Yan, Han-Hung Lee, Ziyu Wan, Angel X. Chang","doi":"arxiv-2408.03178","DOIUrl":null,"url":null,"abstract":"We introduce a new approach for generating realistic 3D models with UV maps\nthrough a representation termed \"Object Images.\" This approach encapsulates\nsurface geometry, appearance, and patch structures within a 64x64 pixel image,\neffectively converting complex 3D shapes into a more manageable 2D format. By\ndoing so, we address the challenges of both geometric and semantic irregularity\ninherent in polygonal meshes. This method allows us to use image generation\nmodels, such as Diffusion Transformers, directly for 3D shape generation.\nEvaluated on the ABO dataset, our generated shapes with patch structures\nachieve point cloud FID comparable to recent 3D generative models, while\nnaturally supporting PBR material generation.","PeriodicalId":501174,"journal":{"name":"arXiv - CS - Graphics","volume":"77 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.03178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a new approach for generating realistic 3D models with UV maps through a representation termed "Object Images." This approach encapsulates surface geometry, appearance, and patch structures within a 64x64 pixel image, effectively converting complex 3D shapes into a more manageable 2D format. By doing so, we address the challenges of both geometric and semantic irregularity inherent in polygonal meshes. This method allows us to use image generation models, such as Diffusion Transformers, directly for 3D shape generation. Evaluated on the ABO dataset, our generated shapes with patch structures achieve point cloud FID comparable to recent 3D generative models, while naturally supporting PBR material generation.
一个物体价值 64x64 像素通过图像扩散生成 3D 物体
我们介绍了一种通过 "对象图像 "表示法生成具有 UV 贴图的逼真 3D 模型的新方法。这种方法将表面几何形状、外观和补丁结构封装在 64x64 像素的图像中,有效地将复杂的三维形状转换为更易于管理的二维格式。通过这种方法,我们解决了多边形网格固有的几何和语义不规则性难题。通过在 ABO 数据集上进行评估,我们生成的带有补丁结构的形状的点云 FID 值与最新的三维生成模型相当,同时还支持 PBR 材质生成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信