An elliptic problem in dimension N with a varying drift term bounded in LN

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Juan Casado-Díaz
{"title":"An elliptic problem in dimension N with a varying drift term bounded in LN","authors":"Juan Casado-Díaz","doi":"10.3233/asy-241914","DOIUrl":null,"url":null,"abstract":"The present paper is devoted to study the asymptotic behavior of a sequence of linear elliptic equations with a varying drift term, whose coefficients are just bounded in LN(Ω), with N the dimension of the space. It is known that there exists a unique solution for each of these problems in the Sobolev space H01(Ω). However, because the operators are not coercive, there is no uniform estimate of the solutions in this space. We use some estimates in (J. Differential Equations 258 (2015) 2290–2314), and a regularization obtained by adding a small nonlinear first order term, to pass to the limit in these problems.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3233/asy-241914","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The present paper is devoted to study the asymptotic behavior of a sequence of linear elliptic equations with a varying drift term, whose coefficients are just bounded in LN(Ω), with N the dimension of the space. It is known that there exists a unique solution for each of these problems in the Sobolev space H01(Ω). However, because the operators are not coercive, there is no uniform estimate of the solutions in this space. We use some estimates in (J. Differential Equations 258 (2015) 2290–2314), and a regularization obtained by adding a small nonlinear first order term, to pass to the limit in these problems.
维数为 N 的椭圆问题,其漂移项的变化在 LN 中有界
本文致力于研究一连串带有变化漂移项的线性椭圆方程的渐近行为,这些方程的系数在 LN(Ω)中是有界的,N 是空间的维数。众所周知,在索波列夫空间 H01(Ω)中,这些问题都存在唯一的解。然而,由于算子不是强制的,因此在这个空间中的解没有统一的估计值。我们利用《微分方程学报》(J. Differential Equations 258 (2015) 2290-2314)中的一些估计,以及通过添加一个小的非线性一阶项获得的正则化,来达到这些问题的极限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信