Miroslav Gašparík, Aleš Zeidler, Eva Výbohová, Danica Kačíková, František Kačík
{"title":"Chemical changes of polysaccharides in heat-treated European beech wood","authors":"Miroslav Gašparík, Aleš Zeidler, Eva Výbohová, Danica Kačíková, František Kačík","doi":"10.1186/s10086-024-02151-3","DOIUrl":null,"url":null,"abstract":"This work deals with the influence of different heat treatment temperatures (140, 150, 160, 170, 180, 190, 200, and 210 °C) on changes in sapwood and red heartwood of European beech (Fagus sylvatica L.). According to the results of wet chemistry methods, HPLC (high-performance liquid chromatography), FTIR (Fourier transform infrared spectroscopy), SEC (size exclusion chromatography), the wood constituents in sapwood and red heartwood behaved similarly to heat treatment, but the individual proportions were different. The loss of hemicelluloses and the increase in extractives with increasing temperature were more pronounced in sapwood. The amount of cellulose in sapwood and red heartwood showed similar behaviour with increasing temperature. Thermal treatment causes changes in cellulose crystallinity, and the formation of aromatic structures, mainly in beech sapwood. However, the increase in the lignin content of red heartwood was significantly lower than that of sapwood due to its auto condensation, and formation of pseudo-lignin. Among the carbohydrates, the most significant changes were observed in xylose content, which was almost twice as high in red heartwood as in sapwood. Other carbohydrates (glucose, mannose, galactose, and arabinose) reached similar values in sapwood and red heartwood.","PeriodicalId":17664,"journal":{"name":"Journal of Wood Science","volume":"43 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Wood Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1186/s10086-024-02151-3","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
This work deals with the influence of different heat treatment temperatures (140, 150, 160, 170, 180, 190, 200, and 210 °C) on changes in sapwood and red heartwood of European beech (Fagus sylvatica L.). According to the results of wet chemistry methods, HPLC (high-performance liquid chromatography), FTIR (Fourier transform infrared spectroscopy), SEC (size exclusion chromatography), the wood constituents in sapwood and red heartwood behaved similarly to heat treatment, but the individual proportions were different. The loss of hemicelluloses and the increase in extractives with increasing temperature were more pronounced in sapwood. The amount of cellulose in sapwood and red heartwood showed similar behaviour with increasing temperature. Thermal treatment causes changes in cellulose crystallinity, and the formation of aromatic structures, mainly in beech sapwood. However, the increase in the lignin content of red heartwood was significantly lower than that of sapwood due to its auto condensation, and formation of pseudo-lignin. Among the carbohydrates, the most significant changes were observed in xylose content, which was almost twice as high in red heartwood as in sapwood. Other carbohydrates (glucose, mannose, galactose, and arabinose) reached similar values in sapwood and red heartwood.
期刊介绍:
The Journal of Wood Science is the official journal of the Japan Wood Research Society. This journal provides an international forum for the exchange of knowledge and the discussion of current issues in wood and its utilization. The journal publishes original articles on basic and applied research dealing with the science, technology, and engineering of wood, wood components, wood and wood-based products, and wood constructions. Articles concerned with pulp and paper, fiber resources from non-woody plants, wood-inhabiting insects and fungi, wood biomass, and environmental and ecological issues in forest products are also included. In addition to original articles, the journal publishes review articles on selected topics concerning wood science and related fields. The editors welcome the submission of manuscripts from any country.