Improving Efficiency of Flotation for Tavantolgoi Coal after Interplay Combination Ultrasonic and Electrolysis

IF 0.8 4区 工程技术 Q4 CHEMISTRY, MULTIDISCIPLINARY
Ariyasuren Purevdorj, Erdenechimeg Dolgor, Tugsuu Tserendorj
{"title":"Improving Efficiency of Flotation for Tavantolgoi Coal after Interplay Combination Ultrasonic and Electrolysis","authors":"Ariyasuren Purevdorj,&nbsp;Erdenechimeg Dolgor,&nbsp;Tugsuu Tserendorj","doi":"10.3103/S0361521924700198","DOIUrl":null,"url":null,"abstract":"<p>The Tavantolgoi coal deposit used in our study is one of the largest deposits and belongs to coking coal of the Permian age. Technical properties of each layer of coal in Ukhaa Khudag of the Tavantolgoi deposit were determined and compared. This study was carried out by selecting coal from layer 4C, which has the lowest calorific value of economically important layers. Sieve analysis of the coal samples was carried out to select the ultra-fine or ˂0.25 mm particle size fraction, and three different methods of flotation enrichment were conducted and compared. In this, conventional flotation, flotation after interplay of ultrasonic vibration and flotation after interplay combined with ultrasonic with electrolysis were carried out, respectively. As a result of the experiment, the best result was the coal concentrate with 6078k Cal/kg calorific value and 25.65% ash content of flotation after interplay of ultrasonic vibration combined with electrolysis. Therefore, we have determined the suitable experimental conditions for the further application of ultrasonic vibration in combination with electrolysis. We determined that the ultrasonic vibration time of 20 min, the amount of ethanol of 30 ml, and the electrolysis power of 1.5 A are suitable condition because the ash content of the floating concentration is the lowest, 24.1%, and the caloric content was the highest (6264 kcal/kg).</p>","PeriodicalId":779,"journal":{"name":"Solid Fuel Chemistry","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid Fuel Chemistry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.3103/S0361521924700198","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The Tavantolgoi coal deposit used in our study is one of the largest deposits and belongs to coking coal of the Permian age. Technical properties of each layer of coal in Ukhaa Khudag of the Tavantolgoi deposit were determined and compared. This study was carried out by selecting coal from layer 4C, which has the lowest calorific value of economically important layers. Sieve analysis of the coal samples was carried out to select the ultra-fine or ˂0.25 mm particle size fraction, and three different methods of flotation enrichment were conducted and compared. In this, conventional flotation, flotation after interplay of ultrasonic vibration and flotation after interplay combined with ultrasonic with electrolysis were carried out, respectively. As a result of the experiment, the best result was the coal concentrate with 6078k Cal/kg calorific value and 25.65% ash content of flotation after interplay of ultrasonic vibration combined with electrolysis. Therefore, we have determined the suitable experimental conditions for the further application of ultrasonic vibration in combination with electrolysis. We determined that the ultrasonic vibration time of 20 min, the amount of ethanol of 30 ml, and the electrolysis power of 1.5 A are suitable condition because the ash content of the floating concentration is the lowest, 24.1%, and the caloric content was the highest (6264 kcal/kg).

Abstract Image

Abstract Image

超声波和电解相结合提高塔万托勒盖煤的浮选效率
摘要 我们研究的塔万托勒盖煤矿是最大的煤矿之一,属于二叠纪炼焦煤。我们测定并比较了塔万托勒盖煤层中 Ukhaa Khudag 每一层煤的技术特性。这项研究选取了 4C 煤层的煤炭,该煤层在具有重要经济价值的煤层中热值最低。对煤样进行了筛分分析,以选出超细或˂0.25 毫米粒度的部分,并对三种不同的浮选富集方法进行了比较。其中,分别进行了常规浮选、超声波振动相互作用后浮选和超声波与电解相结合的相互作用后浮选。实验结果表明,超声波振动与电解相互影响后浮选的煤精矿热值为 6078kCal/kg,灰分含量为 25.65%。因此,我们确定了进一步应用超声波振动与电解相结合的合适实验条件。我们确定超声波振动时间为 20 分钟、乙醇量为 30 毫升、电解功率为 1.5 A 是合适的条件,因为浮选浓度的灰分含量最低,为 24.1%,热量含量最高(6264 千卡/千克)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solid Fuel Chemistry
Solid Fuel Chemistry CHEMISTRY, MULTIDISCIPLINARY-ENERGY & FUELS
CiteScore
1.10
自引率
28.60%
发文量
52
审稿时长
6-12 weeks
期刊介绍: The journal publishes theoretical and applied articles on the chemistry and physics of solid fuels and carbonaceous materials. It addresses the composition, structure, and properties of solid fuels. The aim of the published articles is to demonstrate how novel discoveries, developments, and theories may be used in improved analysis and design of new types of fuels, chemicals, and by-products. The journal is particularly concerned with technological aspects of various chemical conversion processes and includes papers related to geochemistry, petrology and systematization of fossil fuels, their beneficiation and preparation for processing, the processes themselves, and the ultimate recovery of the liquid or gaseous end products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信