One Man’s Bubble Is Another Man’s Rational Behavior: Comparing Alternative Macroeconomic Hypotheses for the US Housing Market

Q4 Business, Management and Accounting
Anastasios G. Malliaris, Mary Malliaris, Mark S. Rzepczynski
{"title":"One Man’s Bubble Is Another Man’s Rational Behavior: Comparing Alternative Macroeconomic Hypotheses for the US Housing Market","authors":"Anastasios G. Malliaris, Mary Malliaris, Mark S. Rzepczynski","doi":"10.3390/jrfm17080349","DOIUrl":null,"url":null,"abstract":"Competing macroeconomic hypotheses have been developed to explain the US housing market and possible bubble behavior. We employ both seasonally adjusted (SA) and non-seasonally adjusted (NSA) monthly data for about 30 independent variables to examine alternative macro hypotheses for home prices. Using a neural network model as an atheoretical non-linear approach to capture the relative importance of alternative macro variables, we show that these hypotheses generate different macro relevance. As an alternative to testing housing time series, we focus on bubble identification being hypothesis dependent. Model forecast errors (residuals) identify the potential presence of bubbles through standardized residual CUSUM tests for structural breaks. By testing for housing bubbles from these unstructured models, we generate conclusions on the presence of bubbles prior to the Great Financial Crisis and the post-pandemic periods. Competing macro hypotheses or narratives will generate different conclusions on the presence of bubbles and create bubble identification issues.","PeriodicalId":47226,"journal":{"name":"Journal of Risk and Financial Management","volume":"303 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Risk and Financial Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jrfm17080349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Business, Management and Accounting","Score":null,"Total":0}
引用次数: 0

Abstract

Competing macroeconomic hypotheses have been developed to explain the US housing market and possible bubble behavior. We employ both seasonally adjusted (SA) and non-seasonally adjusted (NSA) monthly data for about 30 independent variables to examine alternative macro hypotheses for home prices. Using a neural network model as an atheoretical non-linear approach to capture the relative importance of alternative macro variables, we show that these hypotheses generate different macro relevance. As an alternative to testing housing time series, we focus on bubble identification being hypothesis dependent. Model forecast errors (residuals) identify the potential presence of bubbles through standardized residual CUSUM tests for structural breaks. By testing for housing bubbles from these unstructured models, we generate conclusions on the presence of bubbles prior to the Great Financial Crisis and the post-pandemic periods. Competing macro hypotheses or narratives will generate different conclusions on the presence of bubbles and create bubble identification issues.
一个人的泡沫是另一个人的理性行为:比较美国房地产市场的其他宏观经济假设
为解释美国房地产市场和可能的泡沫行为,人们提出了各种相互竞争的宏观经济假设。我们采用约 30 个独立变量的季节性调整(SA)和非季节性调整(NSA)月度数据来研究房价的其他宏观假设。我们使用神经网络模型作为非理论非线性方法来捕捉替代宏观变量的相对重要性,结果表明这些假设产生了不同的宏观相关性。作为测试住房时间序列的替代方法,我们关注泡沫识别与假设的相关性。模型预测误差(残差)通过标准化残差 CUSUM 检验结构断裂来识别泡沫的潜在存在。通过测试这些非结构化模型中的住房泡沫,我们得出了在大金融危机之前和大流行之后存在泡沫的结论。相互竞争的宏观假设或叙述会对泡沫的存在产生不同的结论,并造成泡沫识别问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
512
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信