Mathieu equation as a result of Laplace perturbation theory in the restricted three body problem

Alexey Rosaev, Eva Plavalova
{"title":"Mathieu equation as a result of Laplace perturbation theory in the restricted three body problem","authors":"Alexey Rosaev, Eva Plavalova","doi":"arxiv-2408.04298","DOIUrl":null,"url":null,"abstract":"Linear equations with periodic coefficients describe the behavior of various\ndynamical systems. This studying is devoted to their applications to the\nplanetary restricted three-body problem (RTBP). Here we consider the Laplace\nmethod for determining perturbation in coordinates. We show that classical\ntheory of perturbation leads to a linear equation with periodic coefficients.\nThan we present a modification of Laplace method. This modification allows us\nto study motion over a longer time interval.","PeriodicalId":501209,"journal":{"name":"arXiv - PHYS - Earth and Planetary Astrophysics","volume":"192 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Earth and Planetary Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Linear equations with periodic coefficients describe the behavior of various dynamical systems. This studying is devoted to their applications to the planetary restricted three-body problem (RTBP). Here we consider the Laplace method for determining perturbation in coordinates. We show that classical theory of perturbation leads to a linear equation with periodic coefficients. Than we present a modification of Laplace method. This modification allows us to study motion over a longer time interval.
受限三体问题中作为拉普拉斯微扰理论结果的马修方程
具有周期性系数的线性方程描述了各种动力系统的行为。本研究致力于将其应用于行星受限三体问题(RTBP)。在此,我们考虑用拉普拉斯方法确定坐标中的扰动。我们证明了经典的扰动理论会导致一个具有周期性系数的线性方程。然后,我们介绍了拉普拉斯法的改进,这种改进允许我们研究更长时间跨度的运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信