Personalizing dietary interventions by predicting individual vulnerability to glucose excursions

Mia Jovanova, Victoria Bruegger, Tobias Kowatsch
{"title":"Personalizing dietary interventions by predicting individual vulnerability to glucose excursions","authors":"Mia Jovanova, Victoria Bruegger, Tobias Kowatsch","doi":"10.1101/2024.08.07.24311591","DOIUrl":null,"url":null,"abstract":"Elevated postprandial glucose levels pose a global epidemic and are crucial in cardiometabolic disease management and prevention. A major challenge is inter-individual variability, which limits the effectiveness of population-wide dietary interventions. To develop personalized interventions, it is critical to first predict a person's vulnerability to postprandial glucose excursions, or elevated post-meal glucose relative to a personal baseline, with minimal burden. We examined the feasibility of personalized models to predict future glucose excursions in the daily lives of 69 Chinese adults with type-2 diabetes (M age=61.5; 50% women; 2595 glucose observations). We developed machine learning models, trained on past individual context and meal-based observations, employing low-burden (continuous glucose monitoring) or additional high-burden (manual meal tracking) approaches. Personalized models predicted glucose excursions (F1-score: M=74%; median=78%), with some individuals being more predictable than others. The low burden-models performed better for those with consistent meal patterns and healthier glycemic profiles. Notably, no two individuals shared the same meal and context-based vulnerability predictors. This study is the first to predict individual vulnerability to glucose excursions among a sample of Chinese adults with type-2 diabetes. Findings can help personalize just-in-time-adaptive dietary interventions to unique vulnerability to glucose excursions in daily live, thereby helping improve diabetes management.","PeriodicalId":501419,"journal":{"name":"medRxiv - Endocrinology","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Endocrinology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.07.24311591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Elevated postprandial glucose levels pose a global epidemic and are crucial in cardiometabolic disease management and prevention. A major challenge is inter-individual variability, which limits the effectiveness of population-wide dietary interventions. To develop personalized interventions, it is critical to first predict a person's vulnerability to postprandial glucose excursions, or elevated post-meal glucose relative to a personal baseline, with minimal burden. We examined the feasibility of personalized models to predict future glucose excursions in the daily lives of 69 Chinese adults with type-2 diabetes (M age=61.5; 50% women; 2595 glucose observations). We developed machine learning models, trained on past individual context and meal-based observations, employing low-burden (continuous glucose monitoring) or additional high-burden (manual meal tracking) approaches. Personalized models predicted glucose excursions (F1-score: M=74%; median=78%), with some individuals being more predictable than others. The low burden-models performed better for those with consistent meal patterns and healthier glycemic profiles. Notably, no two individuals shared the same meal and context-based vulnerability predictors. This study is the first to predict individual vulnerability to glucose excursions among a sample of Chinese adults with type-2 diabetes. Findings can help personalize just-in-time-adaptive dietary interventions to unique vulnerability to glucose excursions in daily live, thereby helping improve diabetes management.
通过预测个人对葡萄糖偏移的易感性,实现个性化饮食干预
餐后血糖水平升高是一种全球性流行病,对心脏代谢疾病的管理和预防至关重要。一个主要的挑战是个体间的差异性,这限制了全民饮食干预措施的有效性。要制定个性化的干预措施,首先必须预测一个人对餐后血糖偏移或相对于个人基线的餐后血糖升高的易感性,并将其负担降至最低。我们研究了个性化模型的可行性,以预测 69 名中国 2 型糖尿病成人患者(男,61.5 岁;女,50%;2595 次血糖观测)日常生活中的未来血糖偏移。我们开发了机器学习模型,根据过去的个人情况和基于膳食的观察结果进行训练,采用低负担(连续血糖监测)或额外高负担(人工膳食跟踪)的方法。个性化模型可预测血糖偏移(F1-分数:中位数=74%;中位数=78%),有些人比其他人更容易预测。对于那些进餐模式一致、血糖特征更健康的人来说,低负担模型的效果更好。值得注意的是,没有两个人具有相同的膳食和基于情境的脆弱性预测因素。这项研究首次在中国 2 型糖尿病成人样本中预测了个人对血糖偏移的易感性。研究结果有助于针对日常生活中易受血糖偏移影响的独特个体,及时采取个性化的适应性饮食干预措施,从而帮助改善糖尿病管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信