Natural model reduction for kinetic equations

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zeyu Jin, Ruo Li
{"title":"Natural model reduction for kinetic equations","authors":"Zeyu Jin, Ruo Li","doi":"10.1007/s40687-024-00466-7","DOIUrl":null,"url":null,"abstract":"<p>A promising approach to investigating high-dimensional problems is to identify their intrinsically low-dimensional features, which can be achieved through recently developed techniques for effective low-dimensional representation of functions such as machine learning. Based on available finite-dimensional approximate solution manifolds, this paper proposes a novel model reduction framework for kinetic equations. The method employs projections onto tangent bundles of approximate manifolds, naturally resulting in first-order hyperbolic systems. Under certain conditions on the approximate manifolds, the reduced models preserve several crucial properties, including hyperbolicity, conservation laws, entropy dissipation, finite propagation speed, and linear stability. For the first time, this paper rigorously discusses the relation between the H-theorem of kinetic equations and the linear stability conditions of reduced systems, determining the choice of Riemannian metrics involved in the model reduction. The framework is widely applicable for the model reduction of many models in kinetic theory.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40687-024-00466-7","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A promising approach to investigating high-dimensional problems is to identify their intrinsically low-dimensional features, which can be achieved through recently developed techniques for effective low-dimensional representation of functions such as machine learning. Based on available finite-dimensional approximate solution manifolds, this paper proposes a novel model reduction framework for kinetic equations. The method employs projections onto tangent bundles of approximate manifolds, naturally resulting in first-order hyperbolic systems. Under certain conditions on the approximate manifolds, the reduced models preserve several crucial properties, including hyperbolicity, conservation laws, entropy dissipation, finite propagation speed, and linear stability. For the first time, this paper rigorously discusses the relation between the H-theorem of kinetic equations and the linear stability conditions of reduced systems, determining the choice of Riemannian metrics involved in the model reduction. The framework is widely applicable for the model reduction of many models in kinetic theory.

动力学方程的自然模型还原
研究高维问题的一个有前途的方法是识别其内在的低维特征,这可以通过最近开发的有效低维函数表示技术(如机器学习)来实现。基于现有的有限维近似解流形,本文提出了一种新颖的动力学方程模型还原框架。该方法利用投影到近似流形的切线束,自然产生一阶双曲系统。在近似流形的某些条件下,还原模型保留了几个关键性质,包括双曲性、守恒定律、熵耗散、有限传播速度和线性稳定性。本文首次严格讨论了动力学方程 H 定理与还原系统线性稳定性条件之间的关系,确定了模型还原所涉及的黎曼度量的选择。该框架广泛适用于动力学理论中许多模型的模型还原。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信