{"title":"Estimating Perceived Mental Workload From Eye-Tracking Data Based on Benign Anisocoria","authors":"Suvodip Chakraborty;Peter Kiefer;Martin Raubal","doi":"10.1109/THMS.2024.3432864","DOIUrl":null,"url":null,"abstract":"From the initial phases of human–computer interaction, where the computer was unaware of the users' mental states, we are now progressing toward cognition-aware user interfaces. One crucial cognitive state considered by research on cognition-aware user interfaces is the cognitive load. Eye-tracking has been suggested as one particularly unobtrusive method for estimating cognitive load. Although the accuracy of cognitive load detection has improved in recent work, it is still insufficient for cognition-aware user interfaces, which require high accuracy for getting accepted by the user. This article introduces two new eye-tracking metrics for estimating perceived cognitive load based on benign anisocoria (BA). Unlike previous pupil-based metrics, our metrics are based on pupil size asymmetry between the left and right eye. As a case study, we illustrate the effectiveness of the proposed metrics on a recently published eye-tracking dataset recorded under laboratory conditions. The results show that our proposed features based on BA can improve the performance of classifiers for detecting the perceived mental workload associated with an \n<inline-formula><tex-math>$N$</tex-math></inline-formula>\n-back test. The best classification accuracy was 84.24% while the classification accuracy in the absence of the proposed features was 81.91% for the light gradient boosting classifier.","PeriodicalId":48916,"journal":{"name":"IEEE Transactions on Human-Machine Systems","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10629234","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Human-Machine Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10629234/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
From the initial phases of human–computer interaction, where the computer was unaware of the users' mental states, we are now progressing toward cognition-aware user interfaces. One crucial cognitive state considered by research on cognition-aware user interfaces is the cognitive load. Eye-tracking has been suggested as one particularly unobtrusive method for estimating cognitive load. Although the accuracy of cognitive load detection has improved in recent work, it is still insufficient for cognition-aware user interfaces, which require high accuracy for getting accepted by the user. This article introduces two new eye-tracking metrics for estimating perceived cognitive load based on benign anisocoria (BA). Unlike previous pupil-based metrics, our metrics are based on pupil size asymmetry between the left and right eye. As a case study, we illustrate the effectiveness of the proposed metrics on a recently published eye-tracking dataset recorded under laboratory conditions. The results show that our proposed features based on BA can improve the performance of classifiers for detecting the perceived mental workload associated with an
$N$
-back test. The best classification accuracy was 84.24% while the classification accuracy in the absence of the proposed features was 81.91% for the light gradient boosting classifier.
期刊介绍:
The scope of the IEEE Transactions on Human-Machine Systems includes the fields of human machine systems. It covers human systems and human organizational interactions including cognitive ergonomics, system test and evaluation, and human information processing concerns in systems and organizations.