Shubham Purwar, Anumita Bose, Achintya Low, Satyendra Singh, R. Venkatesh, Awadhesh Narayan, Setti Thirupathaiah
{"title":"Sn0.06Cr[formula omitted]Te[formula omitted]: A skyrmion superconductor","authors":"Shubham Purwar, Anumita Bose, Achintya Low, Satyendra Singh, R. Venkatesh, Awadhesh Narayan, Setti Thirupathaiah","doi":"10.1016/j.apmt.2024.102328","DOIUrl":null,"url":null,"abstract":"Topological superconductors are an exciting class of quantum materials from the point of view of the fundamental sciences and potential technological applications. Here, we report on the successful introduction of superconductivity in a ferromagnetic layered skyrmion system CrTe, obtained by the Sn intercalation, below a transition temperature of 3.5 K. We observe several interesting physical properties, such as superconductivity, magnetism, and the topological Hall effect, simultaneously in this system. Despite the magnetism and Meissner effects being anisotropic, the superconductivity observed from the in-plane electrical resistivity () is nearly isotropic between and , suggesting separate channels of conduction electrons responsible for the superconductivity and magnetism of this system, which is also supported by our spin-resolved DFT calculations. We identify two orders of higher carrier density in superconducting SnCrTe than the parent CrTe. A jump in the specific heat is noticed around the with a volume fraction of 33%, confirming the bulk superconductivity in SnCrTe. In addition to the introduction of superconductivity, tuning of topological Hall properties is noticed with Sn intercalation. Our observation of superconductivity in a skyrmion lattice brings up a new class of topological quantum materials.","PeriodicalId":8066,"journal":{"name":"Applied Materials Today","volume":"128 1","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Materials Today","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.apmt.2024.102328","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Topological superconductors are an exciting class of quantum materials from the point of view of the fundamental sciences and potential technological applications. Here, we report on the successful introduction of superconductivity in a ferromagnetic layered skyrmion system CrTe, obtained by the Sn intercalation, below a transition temperature of 3.5 K. We observe several interesting physical properties, such as superconductivity, magnetism, and the topological Hall effect, simultaneously in this system. Despite the magnetism and Meissner effects being anisotropic, the superconductivity observed from the in-plane electrical resistivity () is nearly isotropic between and , suggesting separate channels of conduction electrons responsible for the superconductivity and magnetism of this system, which is also supported by our spin-resolved DFT calculations. We identify two orders of higher carrier density in superconducting SnCrTe than the parent CrTe. A jump in the specific heat is noticed around the with a volume fraction of 33%, confirming the bulk superconductivity in SnCrTe. In addition to the introduction of superconductivity, tuning of topological Hall properties is noticed with Sn intercalation. Our observation of superconductivity in a skyrmion lattice brings up a new class of topological quantum materials.
期刊介绍:
Journal Name: Applied Materials Today
Focus:
Multi-disciplinary, rapid-publication journal
Focused on cutting-edge applications of novel materials
Overview:
New materials discoveries have led to exciting fundamental breakthroughs.
Materials research is now moving towards the translation of these scientific properties and principles.