Jiayi Geng, Yunzhu Shi, Pere Barriobero-Vila, Meiyuan Jiao, Yihuan Cao, Yu Tang, Jingzhi He, Chao Ma, Yan Ma, Zhifeng Lei, Zhaoping Lu
{"title":"Ultrastrong and ductile NiTi-based composite with large recoverable strain mediated by a compositionally complex phase","authors":"Jiayi Geng, Yunzhu Shi, Pere Barriobero-Vila, Meiyuan Jiao, Yihuan Cao, Yu Tang, Jingzhi He, Chao Ma, Yan Ma, Zhifeng Lei, Zhaoping Lu","doi":"10.1016/j.apmt.2024.102347","DOIUrl":null,"url":null,"abstract":"NiTi-based composites possess great potential for concurrently improving both mechanical and functional properties. However, relying on traditional alloy design principles limits the design space and greatly hinders the advancement of high-performance NiTi-based composites. The concept of high-entropy alloys has expanded the compositional landscape, unveiling unique structural characteristics for alloy design and providing new prospects for addressing these limitations. Here, we report a compositionally complex NiTi-based composite that exhibits exceptional strength and ductility, along with remarkable recoverable strain. The composite, NiTi(NbMoTaW) (at.%), comprises a 78.0 % B2 NiTi matrix, a 19.2 % Nb-Mo-Ta-W-Ti-Ni compositionally complex body-centered cubic (BCC) phase, and a small amount of TiNi. Notably, this composite demonstrates an engineering compressive strength of 3274 MPa, with a compressive fracture strain of 44.2 % and a maximum recoverable strain of 7.3 % (5.6 % elastic strain and 1.7 % inelastic recoverable strain). These outstanding mechanical properties result from the unique structural characteristics of the compositionally complex phase and the lattice strain matching induced by phase transitions. The substantial recoverable strain was obtained through the reversible B2⇌R⇌B19′ phase transition. This work not only innovates a new category of high-performance NiTi-based composites but also extends the applicability of the high-entropy concept.","PeriodicalId":8066,"journal":{"name":"Applied Materials Today","volume":"84 1","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Materials Today","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.apmt.2024.102347","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
NiTi-based composites possess great potential for concurrently improving both mechanical and functional properties. However, relying on traditional alloy design principles limits the design space and greatly hinders the advancement of high-performance NiTi-based composites. The concept of high-entropy alloys has expanded the compositional landscape, unveiling unique structural characteristics for alloy design and providing new prospects for addressing these limitations. Here, we report a compositionally complex NiTi-based composite that exhibits exceptional strength and ductility, along with remarkable recoverable strain. The composite, NiTi(NbMoTaW) (at.%), comprises a 78.0 % B2 NiTi matrix, a 19.2 % Nb-Mo-Ta-W-Ti-Ni compositionally complex body-centered cubic (BCC) phase, and a small amount of TiNi. Notably, this composite demonstrates an engineering compressive strength of 3274 MPa, with a compressive fracture strain of 44.2 % and a maximum recoverable strain of 7.3 % (5.6 % elastic strain and 1.7 % inelastic recoverable strain). These outstanding mechanical properties result from the unique structural characteristics of the compositionally complex phase and the lattice strain matching induced by phase transitions. The substantial recoverable strain was obtained through the reversible B2⇌R⇌B19′ phase transition. This work not only innovates a new category of high-performance NiTi-based composites but also extends the applicability of the high-entropy concept.
期刊介绍:
Journal Name: Applied Materials Today
Focus:
Multi-disciplinary, rapid-publication journal
Focused on cutting-edge applications of novel materials
Overview:
New materials discoveries have led to exciting fundamental breakthroughs.
Materials research is now moving towards the translation of these scientific properties and principles.