Chao Jiang, Zhiwei Jiang, Shuxin Dai, Dengxiong Li, Ruicheng Wu, Jie Wang, Qingxin Yu, Luxia Ye, Fanglin Shao, Zhipeng Wang, Koo Han Yoo, Yubo Yang, Mang Ke, William C. Cho, Wuran Wei, Zhouting Tuo, Dechao Feng
{"title":"The application of 3D printing technology in tumor radiotherapy in the era of precision medicine","authors":"Chao Jiang, Zhiwei Jiang, Shuxin Dai, Dengxiong Li, Ruicheng Wu, Jie Wang, Qingxin Yu, Luxia Ye, Fanglin Shao, Zhipeng Wang, Koo Han Yoo, Yubo Yang, Mang Ke, William C. Cho, Wuran Wei, Zhouting Tuo, Dechao Feng","doi":"10.1016/j.apmt.2024.102368","DOIUrl":null,"url":null,"abstract":"Three-dimensional (3D) printing technology is a new technology based on computer 3D digital imaging and multi-level continuous printing. From the initial field of construction manufacturing, it has gradually developed into the field of biology and medicine. Currently, 3D printing is widely utilized in orthopedics, dentistry, and other medical disciplines, and is gaining increasing attention in tumor radiotherapy. As a key cancer treatment, the trend towards precision and personalization in radiotherapy aligns perfectly with the capabilities of 3D printing. This innovative technology enables the creation of highly personalized treatment plans through the production of patient-specific anatomical models, radiation boluses, and implantable devices. It facilitates accurate visualization of complex tumor geometries, allowing for precise targeting and dose distribution. Additionally, 3D printing enhances the customization of radiotherapy accessories, improving radiation delivery conformity and minimizing exposure to surrounding healthy tissues. This review highlights the current advancements, applications, and future prospects of 3D printing in tumor radiotherapy, emphasizing its potential to enhance treatment efficacy and patient outcomes.","PeriodicalId":8066,"journal":{"name":"Applied Materials Today","volume":"35 1","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Materials Today","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.apmt.2024.102368","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Three-dimensional (3D) printing technology is a new technology based on computer 3D digital imaging and multi-level continuous printing. From the initial field of construction manufacturing, it has gradually developed into the field of biology and medicine. Currently, 3D printing is widely utilized in orthopedics, dentistry, and other medical disciplines, and is gaining increasing attention in tumor radiotherapy. As a key cancer treatment, the trend towards precision and personalization in radiotherapy aligns perfectly with the capabilities of 3D printing. This innovative technology enables the creation of highly personalized treatment plans through the production of patient-specific anatomical models, radiation boluses, and implantable devices. It facilitates accurate visualization of complex tumor geometries, allowing for precise targeting and dose distribution. Additionally, 3D printing enhances the customization of radiotherapy accessories, improving radiation delivery conformity and minimizing exposure to surrounding healthy tissues. This review highlights the current advancements, applications, and future prospects of 3D printing in tumor radiotherapy, emphasizing its potential to enhance treatment efficacy and patient outcomes.
三维(3D)打印技术是一种基于计算机三维数字成像和多层次连续打印的新技术。它从最初的建筑制造领域,逐渐发展到生物和医学领域。目前,3D 打印技术已广泛应用于骨科、牙科等医学领域,并在肿瘤放疗领域日益受到重视。作为一种重要的癌症治疗手段,放疗的精确化和个性化趋势与 3D 打印技术的功能完美契合。这项创新技术通过制作病人专用的解剖模型、放射栓和植入式装置,实现了高度个性化的治疗方案。它有助于对复杂的肿瘤几何形状进行精确的可视化,从而实现精确的靶向和剂量分布。此外,3D 打印还增强了放疗附件的定制能力,提高了放射线输送的一致性,并最大限度地减少了对周围健康组织的照射。本综述重点介绍了3D打印技术在肿瘤放疗中的当前进展、应用和未来前景,强调了它在提高治疗效果和患者预后方面的潜力。
期刊介绍:
Journal Name: Applied Materials Today
Focus:
Multi-disciplinary, rapid-publication journal
Focused on cutting-edge applications of novel materials
Overview:
New materials discoveries have led to exciting fundamental breakthroughs.
Materials research is now moving towards the translation of these scientific properties and principles.