Hardware-Assisted Virtualization of Neural Processing Units for Cloud Platforms

Yuqi Xue, Yiqi Liu, Lifeng Nai, Jian Huang
{"title":"Hardware-Assisted Virtualization of Neural Processing Units for Cloud Platforms","authors":"Yuqi Xue, Yiqi Liu, Lifeng Nai, Jian Huang","doi":"arxiv-2408.04104","DOIUrl":null,"url":null,"abstract":"Cloud platforms today have been deploying hardware accelerators like neural\nprocessing units (NPUs) for powering machine learning (ML) inference services.\nTo maximize the resource utilization while ensuring reasonable quality of\nservice, a natural approach is to virtualize NPUs for efficient resource\nsharing for multi-tenant ML services. However, virtualizing NPUs for modern\ncloud platforms is not easy. This is not only due to the lack of system\nabstraction support for NPU hardware, but also due to the lack of architectural\nand ISA support for enabling fine-grained dynamic operator scheduling for\nvirtualized NPUs. We present TCloud, a holistic NPU virtualization framework. We investigate\nvirtualization techniques for NPUs across the entire software and hardware\nstack. TCloud consists of (1) a flexible NPU abstraction called vNPU, which\nenables fine-grained virtualization of the heterogeneous compute units in a\nphysical NPU (pNPU); (2) a vNPU resource allocator that enables pay-as-you-go\ncomputing model and flexible vNPU-to-pNPU mappings for improved resource\nutilization and cost-effectiveness; (3) an ISA extension of modern NPU\narchitecture for facilitating fine-grained tensor operator scheduling for\nmultiple vNPUs. We implement TCloud based on a production-level NPU simulator.\nOur experiments show that TCloud improves the throughput of ML inference\nservices by up to 1.4$\\times$ and reduces the tail latency by up to\n4.6$\\times$, while improving the NPU utilization by 1.2$\\times$ on average,\ncompared to state-of-the-art NPU sharing approaches.","PeriodicalId":501333,"journal":{"name":"arXiv - CS - Operating Systems","volume":"105 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Operating Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cloud platforms today have been deploying hardware accelerators like neural processing units (NPUs) for powering machine learning (ML) inference services. To maximize the resource utilization while ensuring reasonable quality of service, a natural approach is to virtualize NPUs for efficient resource sharing for multi-tenant ML services. However, virtualizing NPUs for modern cloud platforms is not easy. This is not only due to the lack of system abstraction support for NPU hardware, but also due to the lack of architectural and ISA support for enabling fine-grained dynamic operator scheduling for virtualized NPUs. We present TCloud, a holistic NPU virtualization framework. We investigate virtualization techniques for NPUs across the entire software and hardware stack. TCloud consists of (1) a flexible NPU abstraction called vNPU, which enables fine-grained virtualization of the heterogeneous compute units in a physical NPU (pNPU); (2) a vNPU resource allocator that enables pay-as-you-go computing model and flexible vNPU-to-pNPU mappings for improved resource utilization and cost-effectiveness; (3) an ISA extension of modern NPU architecture for facilitating fine-grained tensor operator scheduling for multiple vNPUs. We implement TCloud based on a production-level NPU simulator. Our experiments show that TCloud improves the throughput of ML inference services by up to 1.4$\times$ and reduces the tail latency by up to 4.6$\times$, while improving the NPU utilization by 1.2$\times$ on average, compared to state-of-the-art NPU sharing approaches.
云平台神经处理单元的硬件辅助虚拟化
为了最大限度地提高资源利用率,同时确保合理的服务质量,一种自然的方法是虚拟化神经处理单元(NPU),以便为多租户 ML 服务实现高效的资源共享。然而,为现代云平台虚拟化 NPU 并不容易。这不仅是因为缺乏对 NPU 硬件的系统抽象支持,还因为缺乏架构和 ISA 支持,无法为虚拟化 NPU 实现细粒度的动态运算符调度。我们提出了 TCloud,这是一个全面的 NPU 虚拟化框架。我们研究了跨越整个软件和硬件栈的 NPU 虚拟化技术。TCloud 由以下部分组成:(1)称为 vNPU 的灵活 NPU 抽象,可对物理 NPU(pNPU)中的异构计算单元进行细粒度虚拟化;(2) vNPU 资源分配器,可实现 "即用即付 "计算模型和灵活的 vNPU 到 pNPU 映射,从而提高资源利用率和成本效益;(3) 现代 NPU 架构的 ISA 扩展,可促进多个 vNPU 的细粒度张量算子调度。我们在生产级 NPU 模拟器的基础上实现了 TCloud。我们的实验表明,与最先进的 NPU 共享方法相比,TCloud 将 ML 推断服务的吞吐量提高了 1.4 美元/次,将尾部延迟降低了 4.6 美元/次,同时将 NPU 利用率平均提高了 1.2 美元/次。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信