Semiexplicit K‐symplectic‐like methods with energy conservation for noncanonical Hamiltonian systems

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Beibei Zhu, Ran Gu
{"title":"Semiexplicit K‐symplectic‐like methods with energy conservation for noncanonical Hamiltonian systems","authors":"Beibei Zhu, Ran Gu","doi":"10.1002/num.23138","DOIUrl":null,"url":null,"abstract":"For the nonseparable noncanonical Hamiltonian systems, we propose efficient K‐symplectic‐like methods which are semiexplicit and energy‐preserving. By introducing two copies of the phase space and constructing an augmented Hamiltonian, we can separate the noncanonical Hamiltonian system into two explicitly integrable parts. Subsequently, explicit K‐symplectic methods can be constructed by using the splitting and composing method. To enforce constraints on the two copies of the phase space, we provide two transformations with energy conservation property. This enables us to obtain semiexplicit K‐symplectic‐like methods that preserve energy. Two algorithms are provided to implement the semiexplicit K‐symplectic‐like methods with energy conservation and their convergence has been proved. Numerical results on two noncanonical Hamiltonian systems demonstrate that the energy errors of our proposed methods remain bounded within machine precision over long time without exhibiting energy drift. Furthermore, the proposed methods exhibit superior computational efficiency compared to the canonicalized symplectic methods of the same order.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/num.23138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

For the nonseparable noncanonical Hamiltonian systems, we propose efficient K‐symplectic‐like methods which are semiexplicit and energy‐preserving. By introducing two copies of the phase space and constructing an augmented Hamiltonian, we can separate the noncanonical Hamiltonian system into two explicitly integrable parts. Subsequently, explicit K‐symplectic methods can be constructed by using the splitting and composing method. To enforce constraints on the two copies of the phase space, we provide two transformations with energy conservation property. This enables us to obtain semiexplicit K‐symplectic‐like methods that preserve energy. Two algorithms are provided to implement the semiexplicit K‐symplectic‐like methods with energy conservation and their convergence has been proved. Numerical results on two noncanonical Hamiltonian systems demonstrate that the energy errors of our proposed methods remain bounded within machine precision over long time without exhibiting energy drift. Furthermore, the proposed methods exhibit superior computational efficiency compared to the canonicalized symplectic methods of the same order.
非正则哈密顿系统能量守恒的半显式 K-交映法
对于不可分离的非经典哈密顿系统,我们提出了高效的类 K 交映方法,这些方法是半显式和能量守恒的。通过引入两份相空间并构建增强哈密顿,我们可以将非经典哈密顿系统分离成两个显式可积分部分。随后,我们就可以利用拆分和组合方法构建显式 K 交映方法。为了对相空间的两个副本施加约束,我们提供了两种具有能量守恒性质的变换。这样,我们就能得到能量守恒的半显式 K-symplectic 样方法。我们提供了两种算法来实现能量守恒的半显式 K-symplectic-like 方法,并证明了它们的收敛性。两个非对称哈密顿系统的数值结果表明,我们提出的方法的能量误差长期保持在机器精度范围内,不会出现能量漂移。此外,与同阶的典型化交映方法相比,我们提出的方法具有更高的计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信