Evaluation of the collapse susceptibility of loess using machine learning

IF 4.9 2区 工程技术 Q1 ENGINEERING, CIVIL
{"title":"Evaluation of the collapse susceptibility of loess using machine learning","authors":"","doi":"10.1016/j.trgeo.2024.101327","DOIUrl":null,"url":null,"abstract":"<div><p>Evaluating collapse susceptibility of loess is essential for the construction of transportation lines in loess regions as it provides guidance for ground treatment. For the existing methods, a large number of boreholes need to be drilled along transportation lines to collect intact samples for laboratory tests, which make them very time and cost-consuming. In this study, loess’s collapse susceptibility is evaluated using Multi Expression Programming (MEP) and Back-Propagation Neural Network (BPNN). According to analysis of wetting-induced loess collapse, the gravimetric water content at the initial state (<span><math><msub><mi>w</mi><mn>0</mn></msub></math></span>), net vertical stress (<span><math><mrow><mi>σ</mi><mo>-</mo><msub><mi>u</mi><mi>a</mi></msub></mrow></math></span>), void ratio at the initial state (<span><math><msub><mi>e</mi><mn>0</mn></msub></math></span>), void ratio at the liquid limit state (<span><math><msub><mi>e</mi><mi>L</mi></msub></math></span>), and plastic index (<span><math><msub><mi>I</mi><mi>p</mi></msub></math></span>) are chosen as input variables. A comprehensive database incorporating 200 oedometrically soaking tests is established to train and test the two algorithms. The collapse potentials of loess are well predicted using MEP and BPNN, as demonstrated by high values of coefficient of determination (<span><math><mrow><mspace></mspace><msup><mrow><mi>R</mi></mrow><mn>2</mn></msup><mo>&gt;</mo><mn>0.88</mn></mrow></math></span>) and small values of mean absolute error <span><math><mrow><mo>(</mo><mi>M</mi><mi>A</mi><mi>E</mi><mo>&lt;</mo><mn>0.008</mn><mo>)</mo></mrow></math></span> and root mean squared error <span><math><mrow><mo>(</mo><mi>R</mi><mi>M</mi><mi>S</mi><mi>E</mi><mo>&lt;</mo><mn>0.012</mn><mo>)</mo></mrow></math></span>. Following ASTM D5333-03 <span><span>[5]</span></span>, the degree of loess collapse is classified with accuracies of 98 % and 90 % for MEP and BNPP respectively. Furthermore, sensitivity analysis shows the contribution of each variable to the prediction of collapse potential follows the order of <span><math><mrow><msub><mi>e</mi><mn>0</mn></msub><mo>&gt;</mo><msub><mi>e</mi><mi>L</mi></msub><mo>&gt;</mo><msub><mi>I</mi><mi>p</mi></msub><mo>&gt;</mo><mi>σ</mi><mo>-</mo><msub><mi>u</mi><mi>a</mi></msub><mo>&gt;</mo><msub><mi>w</mi><mn>0</mn></msub></mrow></math></span>. The machine learning is expected to assist the code of practice ASTM D5333-03 <span><span>[5]</span></span> in achieving an efficient site-investigation of collapsible loess for the construction of transportation lines.</p></div>","PeriodicalId":56013,"journal":{"name":"Transportation Geotechnics","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221439122400148X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Evaluating collapse susceptibility of loess is essential for the construction of transportation lines in loess regions as it provides guidance for ground treatment. For the existing methods, a large number of boreholes need to be drilled along transportation lines to collect intact samples for laboratory tests, which make them very time and cost-consuming. In this study, loess’s collapse susceptibility is evaluated using Multi Expression Programming (MEP) and Back-Propagation Neural Network (BPNN). According to analysis of wetting-induced loess collapse, the gravimetric water content at the initial state (w0), net vertical stress (σ-ua), void ratio at the initial state (e0), void ratio at the liquid limit state (eL), and plastic index (Ip) are chosen as input variables. A comprehensive database incorporating 200 oedometrically soaking tests is established to train and test the two algorithms. The collapse potentials of loess are well predicted using MEP and BPNN, as demonstrated by high values of coefficient of determination (R2>0.88) and small values of mean absolute error (MAE<0.008) and root mean squared error (RMSE<0.012). Following ASTM D5333-03 [5], the degree of loess collapse is classified with accuracies of 98 % and 90 % for MEP and BNPP respectively. Furthermore, sensitivity analysis shows the contribution of each variable to the prediction of collapse potential follows the order of e0>eL>Ip>σ-ua>w0. The machine learning is expected to assist the code of practice ASTM D5333-03 [5] in achieving an efficient site-investigation of collapsible loess for the construction of transportation lines.

利用机器学习评估黄土的崩塌敏感性
评估黄土的易塌陷性对于在黄土地区建设交通线路至关重要,因为它能为地面处理提供指导。在现有方法中,需要沿交通线钻大量的钻孔,采集完整的样本进行实验室测试,因此非常耗时耗钱。本研究采用多重表达式编程(MEP)和反向传播神经网络(BPNN)对黄土的塌陷敏感性进行了评估。根据对湿陷性黄土塌陷的分析,选择初始状态下的重力含水量()、净垂直应力()、初始状态下的空隙率()、液限状态下的空隙率()和塑性指数()作为输入变量。为训练和测试这两种算法,建立了一个包含 200 个单向浸泡试验的综合数据库。结果表明,使用 MEP 和 BPNN 可以很好地预测黄土的塌陷势,其判定系数()较高,平均绝对误差和均方根误差较小。根据 ASTM D5333-03,MEP 和 BNPP 对黄土塌陷程度的分类准确率分别为 98% 和 90%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Transportation Geotechnics
Transportation Geotechnics Social Sciences-Transportation
CiteScore
8.10
自引率
11.30%
发文量
194
审稿时长
51 days
期刊介绍: Transportation Geotechnics is a journal dedicated to publishing high-quality, theoretical, and applied papers that cover all facets of geotechnics for transportation infrastructure such as roads, highways, railways, underground railways, airfields, and waterways. The journal places a special emphasis on case studies that present original work relevant to the sustainable construction of transportation infrastructure. The scope of topics it addresses includes the geotechnical properties of geomaterials for sustainable and rational design and construction, the behavior of compacted and stabilized geomaterials, the use of geosynthetics and reinforcement in constructed layers and interlayers, ground improvement and slope stability for transportation infrastructures, compaction technology and management, maintenance technology, the impact of climate, embankments for highways and high-speed trains, transition zones, dredging, underwater geotechnics for infrastructure purposes, and the modeling of multi-layered structures and supporting ground under dynamic and repeated loads.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信