{"title":"Assessment of the utilization of cement-treated geotextile as a reinforcement element for highway base layer under cyclic loading","authors":"","doi":"10.1016/j.trgeo.2024.101333","DOIUrl":null,"url":null,"abstract":"<div><p>This study conducted large-scale cyclic loading experiments on the base layer overlying a weak subgrade soil. Geotextile and cement-treated geotextile were utilized to reinforce the base material and to separate the interface of soils between the base layer and the subgrade. The results obtained from the repeated loading tests using geotextile and cement-treated geotextile were analyzed and evaluated in terms of some benchmark indicators such as total deformation, permanent deformation, elastic deformation, percentage of elastic deformation, traffic benefit ratio (TBR), elastic modulus (M<sub>R</sub>), improvement factor (I<sub>f</sub>), and rut depth reduction ratio (RDR). Based on the experimental results, the use of cement-treated geotextile as a base layer reinforcement element or as an interfacial separation element demonstrated better performance compared to the use of geotextile. Utilization of a cement-treated geotextile as both reinforcement and separation element resulted in an RDR value of 49.26 % after 5000 cycles. Additionally, using a cement-treated geotextile for both reinforcement and separation increased the TBR value to 14.62 at 27 mm deformation, decreased the permanent deformation value from 53.67 mm to 27.23 mm, and approached approximately 2 improvement factor values, compared to using the geotextile solely for separation.</p></div>","PeriodicalId":56013,"journal":{"name":"Transportation Geotechnics","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214391224001545","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
This study conducted large-scale cyclic loading experiments on the base layer overlying a weak subgrade soil. Geotextile and cement-treated geotextile were utilized to reinforce the base material and to separate the interface of soils between the base layer and the subgrade. The results obtained from the repeated loading tests using geotextile and cement-treated geotextile were analyzed and evaluated in terms of some benchmark indicators such as total deformation, permanent deformation, elastic deformation, percentage of elastic deformation, traffic benefit ratio (TBR), elastic modulus (MR), improvement factor (If), and rut depth reduction ratio (RDR). Based on the experimental results, the use of cement-treated geotextile as a base layer reinforcement element or as an interfacial separation element demonstrated better performance compared to the use of geotextile. Utilization of a cement-treated geotextile as both reinforcement and separation element resulted in an RDR value of 49.26 % after 5000 cycles. Additionally, using a cement-treated geotextile for both reinforcement and separation increased the TBR value to 14.62 at 27 mm deformation, decreased the permanent deformation value from 53.67 mm to 27.23 mm, and approached approximately 2 improvement factor values, compared to using the geotextile solely for separation.
期刊介绍:
Transportation Geotechnics is a journal dedicated to publishing high-quality, theoretical, and applied papers that cover all facets of geotechnics for transportation infrastructure such as roads, highways, railways, underground railways, airfields, and waterways. The journal places a special emphasis on case studies that present original work relevant to the sustainable construction of transportation infrastructure. The scope of topics it addresses includes the geotechnical properties of geomaterials for sustainable and rational design and construction, the behavior of compacted and stabilized geomaterials, the use of geosynthetics and reinforcement in constructed layers and interlayers, ground improvement and slope stability for transportation infrastructures, compaction technology and management, maintenance technology, the impact of climate, embankments for highways and high-speed trains, transition zones, dredging, underwater geotechnics for infrastructure purposes, and the modeling of multi-layered structures and supporting ground under dynamic and repeated loads.