The spherical maximal operators on hyperbolic spaces

Peng Chen, Minxing Shen, Yunxiang Wang, Lixin Yan
{"title":"The spherical maximal operators on hyperbolic spaces","authors":"Peng Chen, Minxing Shen, Yunxiang Wang, Lixin Yan","doi":"arxiv-2408.02180","DOIUrl":null,"url":null,"abstract":"In this article we investigate $L^p$ boundedness of the spherical maximal\noperator $\\mathfrak{m}^\\alpha$ of (complex) order $\\alpha$ on the\n$n$-dimensional hyperbolic space $\\mathbb{H}^n$, which was introduced and\nstudied by Kohen [13]. We prove that when $n\\geq 2$, for $\\alpha\\in\\mathbb{R}$\nand $1<p<\\infty$, if \\begin{eqnarray*}\n\\|\\mathfrak{m}^\\alpha(f)\\|_{L^p(\\mathbb{H}^n)}\\leq C\\|f\\|_{L^p(\\mathbb{H}^n)},\n\\end{eqnarray*} then we must have $\\alpha>1-n+n/p$ for $1<p\\leq 2$; or\n$\\alpha\\geq \\max\\{1/p-(n-1)/2,(1-n)/p\\}$ for $2<p<\\infty$. Furthermore, we\nimprove the result of Kohen [13, Theorem 3] by showing that\n$\\mathfrak{m}^\\alpha$ is bounded on $L^p(\\mathbb{H}^n)$ provided that\n$\\mathop{\\mathrm{Re}} \\alpha> \\max \\{{(2-n)/p}-{1/(p p_n)}, \\ {(2-n)/p} -\n(p-2)/ [p p_n(p_n-2) ] \\} $ for $2\\leq p\\leq \\infty$, with $p_n=2(n+1)/(n-1)$\nfor $n\\geq 3$ and $p_n=4$ for $n=2$.","PeriodicalId":501036,"journal":{"name":"arXiv - MATH - Functional Analysis","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.02180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article we investigate $L^p$ boundedness of the spherical maximal operator $\mathfrak{m}^\alpha$ of (complex) order $\alpha$ on the $n$-dimensional hyperbolic space $\mathbb{H}^n$, which was introduced and studied by Kohen [13]. We prove that when $n\geq 2$, for $\alpha\in\mathbb{R}$ and $11-n+n/p$ for $1 \max \{{(2-n)/p}-{1/(p p_n)}, \ {(2-n)/p} - (p-2)/ [p p_n(p_n-2) ] \} $ for $2\leq p\leq \infty$, with $p_n=2(n+1)/(n-1)$ for $n\geq 3$ and $p_n=4$ for $n=2$.
双曲空间上的球面最大算子
在本文中,我们研究了(复)阶 $\alpha$ 的球面最大算子 $\mathfrak{m}^\alpha$ 在 $n$ 维双曲空间 $\mathbb{H}^n$ 上的 $L^p$ 有界性,该算子由 Kohen [13] 引入并研究。我们证明,当 $n\geq 2$ 时,对于 $\alpha\in\mathbb{R}$ 和 $11-n+n/p$ 为 1 \max \{(2-n)/p}-{1/(p p_n)}, \ {(2-n)/p}-(p-2)/[p_p_n(p_n-2) ] \}$为2\leq p\leq \infty$,$n≥3$时为$p_n=2(n+1)/(n-1)$,$n=2$时为$p_n=4$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信